• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 31 (2018)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Encapsulation of specific Salmonella Enteritidis phage f3αSE on alginate-spheres as a method for protection and dosification | Soto | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2017.11.006
Electronic Journal of Biotechnology, Vol 31 (2018)

Encapsulation of specific Salmonella Enteritidis phage f3αSE on alginate-spheres as a method for protection and dosification

María José Soto, Julio Retamales, Humberto Palza, Roberto Bastías



Abstract

Background: Bacteriophages have been proposed as an alternative to control pathogenic bacteria resistant to antibiotics. However, they are not extensively used due to different factors such as vulnerability under environmental conditions and the lack of efficient administration methods. A potential solution is the encapsulation of bacteriophages in hydrogel polymers to increase their viability and as a controlled release method. This work describes the use of alginate-Ca+2 matrixes as mechanisms for protection and dosification of the phage f3αSE which has been successfully used to prevent infections produced by Salmonella Enteritidis.

Results: The viability of the pure phage is reduced in near 100% after 1-h incubation at pH 2 or 3. However, the encapsulated phage remains active in 80, 6% at pH 3, while no differences were observed at pH 2, 4 or 7. Exposition of f3αSE to different T° showed that the viability of this phage decreased with increased T° to near 15% at 60°C, while the encapsulated phage remains with 50% viability at same temperature. Finally, the encapsulation of phages showed to extend their presence for 100 h in the medium compared to non-encapsulated phages in a water flow system, which simulate automatic birdbath used in poultry industry, maintaining the phage concentration between 102 and 104 PFU/mL during 250 h.

Conclusions: Encapsulation in alginate-Ca+2 spheres can be a good alternative to extend viability of phages and can be used as a phage method dosification method in water flow systems.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology