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Abstract  

Background: Calibration of dynamic models in biotechnology is challenging. Kinetic models are 
usually complex and differential equations are highly coupled involving a large number of parameters. 
In addition, available measurements are scarce and infrequent, and some key variables are often non-
measurable. Therefore, effective optimization and statistical analysis methods are crucial to achieve 
meaningful results. In this research, we apply a metaheuristic scatter search algorithm to calibrate a 
solid substrate cultivation model. Results: Even though scatter search has shown to be effective for 
calibrating difficult nonlinear models, we show here that a posteriori analysis can significantly improve 
the accuracy and reliability of the estimation. Conclusions: Sensibility and correlation analysis helped 
us detect reliability problems and provided suggestions to improve the design of future experiments. 

Keywords: Gibberella fujikuroi, gibberellic acid, global optimization, metaheuristics, nonlinear dynamic 
models, parameter estimation, solid substrate cultivation 
 
 
 
 
INTRODUCTION 

Processes in biotechnology usually represent productions in relatively small quantities and are 
therefore mostly done in batches. These systems possess an inherently dynamic character making it 
difficult for scale-up and optimization. Therefore, accurate dynamic models are necessary to predict the 
behaviour of these processes, which is why models have gained great importance in recent years. 
However it is difficult to uniquely identify the parameters and state variables, due to the sheer number 
used. 

The usual procedure to identify a certain model relies on the quest to identify a set of values for the 
unknown parameters, such that the integration of the model will represent the existing experimental 
data as precisely as possible. This procedure, referred to as regression, involves minimizing the 
differences between experimental data and the model predicted values-which is essentially an 
optimization problem. 

Most of the problems in bioprocess engineering applications are highly constrained; they exhibit 
nonlinear dynamics and sometimes have a non-smooth nature. These properties often result in non-
convex and multimodal problems, and therefore are not well predicted by gradient based local 
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methods. In order to provide an approximation of the global optimum, one must use global optimization 
(GO) methods (Banga et al. 2003). These methods are based on robust solvers that can locate the 
vicinity of the global solution in a reasonable number of iterations and handle noise and/or 
discontinuities. Stochastic algorithms, a particular classification of GO methods, treat the objective 
function as a black box; that is, as a simple relationship between inputs and outputs without further 
information about relationships among the decision variables (no derivative information). 
Metaheuristics are particularly useful stochastic global optimization methods which are often used in 
biotechnology. They consist of an iterative generation process that efficiently finds near-optimal 
solutions by intelligently combining different learning strategies to explore and exploit the search 
spaces (Jones et al. 2002). These methods are easy to implement, making them robust for a wide 
variety of problems. The metaheuristic applied in this work is a scatter search method (SS), which is a 
population-based method that has recently shown promising outcomes for solving combinatorial and 
nonlinear optimization problems (Egea et al. 2007). 

Nonetheless, a good model fitting doesn’t ensure that a suitable model can be found. Models with a 
great number of parameters generally fit the experimental data better, but they tend to estimate 
parameters with large confidence intervals. Therefore, the quality of the parameter estimation, in terms 
of accuracy, needs to be checked before reaching a meaningful interpretation of the results. 

The procedures required to test the quality of the parameter estimation are called post-regression 
diagnostics, which encompassvarious methods (Jaqaman and Danuser, 2006): 

Parameter sensitivity (how parameter variations affect response variables). 

Parameter significance (determine parameter confidence intervals). 

Parameter identifiability (detection of cross correlation between parameters). 

Model validity, also known as structural identifiability, implies that the model’s parameters can be 
uniquely identified. If the post-regression diagnostics are unsatisfactory, the model has to be modified 
and/or the experimental data has to be repeated or complemented with new experimental data. 
Furthermore, the diagnostic methods can give valuable recommendations for modifying experimental 
setups in order to increase the data’s information content. It has to be noted that there are several 
methods that systematically optimize experiments so that their information content is maximized. The 
different criteria and problems encountered are described in other publications (Chu and Hahn, 2008; 
Franceschini and Macchietto, 2008), and will not be discussed here. Finally, post-regression 
diagnostics are similar in function to pre-regression diagnostics, since the process of linking data to 
models is inherently cyclical and iterative (Figure 1). 

In this research, a published dynamic model (Gelmi et al. 2002) that consists of eight coupled ordinary 
differential equations and 14 unknown parameters was analyzed. The model presented in Gelmi et al. 
2002 describes the growth and production of a secondary metabolite in solid substrate cultivation 
(SSC) (for more details see Kinetic model). The model was fitted to different experimental conditions 
using a modern version of the SS algorithm, SSm (Rodriguez-Fernandez et al. 2006; Egea et al. 2007). 
Parameter sensitivity, significance and identifiability were applied in order to assess the model’s 
validity. As a consequence of the post-regression analysis, a modified model with a reduced parameter 
set was postulated and fitted to the experimental data using SSm. The fitted parameters were further 
compared to the ones presented in Araya et al. (2007), using an alternative orthogonal collocation on 
finite element (OCFE) optimization method. 

METHODS  

Kinetic model 

The lumped parameter model (Gelmi et al. 2002) describes the changes in the biomass of G. fujikuroi 
growing in glass columns on an inert support (Amberlite IRA-900). The model does not incorporate the 
lag phase of the fungus growth and it is based on the following assumptions: 
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Oxygen transfer resistance is low. 

Available nitrogen is the limiting substrate. 

The carbon source is not limiting. 

Temperature (T) and water activity (aw) remain constant throughout the cultivation. 

The model parameters remain constant during the cultivation. 

The total amount of measurable dry biomass (Xmeasu) considers active as well as inactive fungi and is 
expressed on a dry weight basis (same method used for the other seven variables as well as the other 
seven state variables): 

measudX X
dt

µ=
 

[Equation 1] 

Assuming a first order death rate, the active biomass is: 

d
dX X k X
dt

µ= −
 

[Equation 2] 

Here, µ and kd represent the specific growth and death rate of the fungus, respectively. 

Experimental data (not shown in this article, see Gelmi et al. 2000) shows that the rate of urea 
consumption follows a zero order kinetics and is expressed as: 

dU k
dt

= −
 

[Equation 3] 

k is the rate of conversion of urea to available nitrogen, NI, which can be directly metabolized into 
active biomass. The concentration of assimilable nitrogen is given by: 

0.47
I

I

X N

dN Xk
dt Y

µ
 

= −   
   

[Equation 4] 
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In Equation 4, 0.47 corresponds to the urea nitrogen content and YX/NI is the yield between biomass 
and assimilable nitrogen. Equation 4 can be used to describe observed biomass growth despite total 
urea depletion within the culture. The fungus seems to accumulate part of the nitrogen from the urea 
conversion and uses it for growth when the external source, urea, has been depleted. 

The microorganism consumes starch for growth and maintenance,  

S
X S

dS X m X
dt Y

µ
 

= − −  
 

 

[Equation 5] 

Since GA3 is a secondary metabolite, its production rate includes a growth-associated term with 
nitrogen inhibition, β, and a first order degradation rate, kp. 

3
3p

dGA X k GA
dt

β= −
 

[Equation 6] 

The differential equations for CO2 production and O2 consumption rates include two terms: one 
associated with growth and the other with maintenance, 

2

2

2
CO

X CO

dCO X m X
dt Y

µ
 

= +  
 

 

[Equation 7] 

2

2

2
O

X O

dO X m X
dt Y

µ
 

= +  
   

[Equation 8] 

The specific growth rate, μ, is modelled using Monod’s expression with assimilable nitrogen as the 
limiting nutrient, 
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max I

I n

N
N k
µµ =

+
 

[Equation 9] 

Here, μmax is the maximum specific growth rate and kn is the substrate inhibition constant. A substrate 
inhibition expression describes the specific GA3 production rate, 

etam

1 I IK N
ββ =
+

 

[Equation 10] 

where βetam is the maximum specific GA3 production rate and KI is the associated substrate inhibition 
constant. 

The above model was calibrated using experimental data of four cultures at different temperature and 
aw conditions, 

1) Temperature = 25ºC, Water Activity = 0.992. 

2) Temperature = 25ºC, Water Activity = 0.999. 

3) Temperature = 31ºC, Water Activity = 0.985. 

4) Temperature = 31ºC, Water Activity = 0.992. 

Further details regarding the experimental setup and the above model are available in Gelmi et al. 
(2000) and Gelmi et al. (2002). 

Parameter fitting 

The model parameters were estimated by minimizing the sum of squared residual errors between 
predicted and experimental data. Because not all variables were measured simultaneously and 
because variables have different scales, the sums of squared residuals were weighted by the squared 
number of measurements and by the squared mean experimental value. Thus, the following least 
square function was minimized: 

2

, ,

1 1
Min 

·

i model expnm
i j i j

exp
i j i i

X X
n XΘ

= =

 −
  
 

∑∑
 

[Equation 11] 
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where Θ is the parameter space, Xi,j is the measurement j of the variable i, m is the number of 

measured variables, ni is the number of measurements and 
exp
iX

is the mean of experimental 
measurements for the variable i. 

The optimization procedure was solved numerically using SSm, which is a routine developed in 
MATLAB® (Rodriguez-Fernandez et al. 2006; Egea et al. 2007). SSm orients its explorations in an 
evolutionary procedure where, in each step, random linear combinations of a reference set of solutions 
are created. The reference set is then updated with some best new solutions found and also with some 
of the most diverse solutions found in order to avoid a local minimum. Before the first cycle of iteration, 
a large set of diverse trial solutions is created from which the first reference set is created. If at some 
point in the optimization, the solutions in the reference set impoverish in diversity, a diversification 
method will pass more diverse trial solutions to the reference set. If desired, a so-called improvement 
method can undertake local searches for the best solutions found. Several local solvers can be easily 
chosen in SSm options. We encountered the local solver fminsearch to be very effective. The iteration 
stops when the maximum number of objective function evaluations is reached and the best solution is 
drawn out. In our case, an evaluation number between 30,000 and 40,000 appeared to be sufficient. 

Pre/post-regression diagnostics 

The regression diagnostic tests were computed using the software package MATLAB® version 2009b 
running in a Windows PC 2 GB RAM. 

Parameter sensitivity measures to what extent the model’s outputs are influenced by variations in 
parameter values. Absolute sensitivity is defined as: 

( )
( ) i

ij
j

dX t
G t

dθ
=

 

[Equation 12] 

It is particularly useful for complex systems that involve a large number of variables and parameters, in 
which it is crucial to identify either the most important ones or the non-sensitive parameters (Yue et al. 
2008). Non-sensitive parameters are parameters that don’t influence the state variables. In dynamic 
models, parameter sensitivity varies with time and thus parameters can be non-sensitive for certain 
time intervals and sensitive for others. Since parameters and response variables can differ extremely in 
scale, a normalized sensitivity is useful to facilitate comparison: 

( )
( ) j i

ij
i j

dX t
G t

X d
θ

θ
=

 

[Equation 13] 

The derivatives of Equation 13 were determined numerically by the finite difference method. A central 
difference approach was used with a 1% perturbation factor around the nominal parameter values. 
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Parameter determinability or identifiability calculates the correlation matrix of the model parameters in 
order to determine if the fitted parameters are locally identifiable for a given time interval (Jacquez and 
Greif, 1985). The matrix elements represent the parameter cross correlations, defined as: 

Kij = correlation (G) 

[Equation 14] 

G is the sensitivity matrix, where each column represents the sensitivity of a given parameter (j) 
computed at measured times (t1, t2, …, tn) for all the states. In general, parameters that are a priori 
identifiable have correlations with all other parameters between – 1 and + 1. In practical terms, a high 
correlation coefficient value is defined as: 

0.95ijκ >
 

[Equation 15] 

If two parameters are highly correlated, it is said that they are a priori unidentifiable. These parameters 
affect the measured variables in exactly the same way (or same opposite way). 

Parameter significance and confidence intervals were calculated after the parameters were fitted to the 
experimental data. In order to establish the statistical significance of estimates, a Student t-value for 
each parameter was used (Franceschini and Macchietto, 2008): 

2
î

i

i

t θ

σ
=

 

[Equation 16] 

where σi is the standard deviation of the ith parameter. The t-values may be tested by reference to a t-
distribution with (n-p) degrees of freedom; higher t-values than those in the distribution tend to indicate 
reliable estimates (t-value > 1.96 for large values of n-p). Very low t-values suggest that confidence 
intervals or regions involving that parameter may include zero and such a situation means that the 
parameter could be statistically dropped from the model. 

The usual method to obtain the parameter variances relies on estimating them through the diagonal 
elements of the Fisher Information Matrix(FIM) (Landaw and DiStefano III, 1984; Petersen et al. 2001): 

2 1
i iiFIMσ −≥

 

[Equation 17] 

In the case of biologic and chemical dynamic processes, the FIM can be obtained by (Chu and Hahn, 
2008): 
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1

1

N
TFIM G Q G−= ∑

 

[Equation 18] 

The matrix product is summed over all experimental times. In this equation, Q is the matrix of 
measurement error covariances and G is the sensitivity matrix of the measured states. Assuming that 
the measurement errors are independent, Q is a diagonal matrix with all covariance equal to zero. The 
only non zero entries are the diagonal elements, σ2

meas,j, that are the measurement errors variances. 
These variances are usually approximated using the residuals of the state variables (Franceschini and 
Macchietto, 2008): 

( )2 2
, ,

2
mod

, ,ˆ
N

meas el
jmeas j m k j kea j

k
s y yσ σ≈ = −∑

 

[Equation 19] 

We numerically estimated the derivatives of the sensitivity matrix using a central finite difference: 

ˆ

ˆ ˆ( ) ( )
2

j j i i j i i

i i

X X X

θ

θ θ θ θ
θ θ

∂ + ∆ − −∆
≈

∂ ∆

  

[Equation 20] 

This task proved far from trivial. Usually, one would make the Δθi step just small enough to obtain 
accurate values. But it is important to be careful of numerical integration noise, which, in our case, 
appeared to be considerable. The presence of noise leads to a situation where small step size will 
produce false and large derivatives. These derivatives will propagate in large FIMs, producing small 
confidence intervals. Therefore, we always made the effort to check the precision of the estimated 
derivatives, carefully varying the step size if necessary. 

Notice that in order to apply Equation 18, all experimental variables need to have measurements at the 
same experimental times. This is not our case. However, the frequency of the measurements was very 
similar and many of them were sampled at the same times. This made it reasonable to interpolate the 
different measurements using a uniform time interval vector. The interpolated values and times are 
shown in Figure 2, Figure 3, Figure 4 and Figure 5. 

RESULTS AND DISCUSSION  

In this section we will present and discuss the main results of the different diagnostic methods used in 
this paper (see Pre/post-regression diagnostics), along with the modifications performed based on our 
analysis. Later, we will show how the fitted parameters compare with those reported by Araya et al. 
(2007) using Orthogonal Collocation on Finite Elements (OCFE). Finally, we contrast the performance 
of the global optimization technique used here, with standard techniques used in previous publications. 
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Identifiability analysis 

The identifiability analysis showed that several pairs of the 14 model parameters were highly 
correlated. 

Primarily, parameter µmax was highly correlated with the inhibition constant kN (Kij > 0.98) in all 
conditions. The implication of this is that there are several combinations of µmax and kN values that lead 
to identical biomass levels. The usual procedure to deal with this situation is to hold constant one of the 
correlated parameters. The parameter to fix should be the one that is well known in the literature so 
that a reliable value for the less known parameter is obtained. In our case we fixed µmax as we found 
reliable values in Gelmi et al. (2000). 

Significant correlation was also found in parameters associated with starch, CO2 and O2 levels 
(Equation 5 and Equation 7) in several culture conditions (Kij > 0.95). The highly correlated pairs were: 
YX/S and mS, YX/CO2 and mCO2, YX/O2 and mCO2. As before, the better known value should be fixed in 
order to make a reliable estimation for the other. However, no reliable values for those parameters 
exist in the literature, since to date few investigations in SSC have been done in G. fujikuroi. 
Consequently, other experiments have to be planned under each condition in order to identify one of 
the parameters independently. In this study we fixed YX/S, YX/CO2 and YX/O2 arbitrarily to the values 
obtained in Gelmi et al. (2002), as shown in Table 1. However, the oxygen yields are similar to (even 
smaller than) those previously reported in SSF-between 3.8 and 2.7 g/g- (Soccol et al. 1993; 
Rodríguez-León et al. 1999; Brand et al. 2001; Brand et al. 2002). Furthermore, a recent publication by 
Chavez-Parga et al. (2008) reported yields similar (Yx/s = 0.22-1.87 g/g and Yx/n = 11-49.4 g/g) to the 
ones reported by Gelmi et al. (2002). The confidence intervals shown in Figure 6 show that the 
estimated biomass/nitrogen yields are reliable. 

Sensitivity analysis 

Our sensitivity analysis showed that the degradation rate kp present in the GA3 equation shows that 
regardless of the culture conditions evaluated, state variables show no sensitivity on any state variable 
at any culture condition. Therefore, in order to facilitate the optimization effort, we set kp to zero. All 
other parameters showed to affect at least one of the state variables of the model. The results are 
shown in Figure 7. 

Parameter calibration 

First, calibrations with the full set of 14 parameters were performed. The regression was unstable, in 
the sense that very different estimates produced equally good results. This is due to the effects of 
unidentifiable parameters described in Identifiability analysis. As a direct consequence, we reduced the 
parameter space to 9 parameters. After the reduction in dimensionality, the calibration results were 
stable. 

Figure 2, Figure 3, Figure 4 and Figure 5 show our calibration curves in comparison with the curves 
resulting from OCFE. Under all culture conditions, good parameter fits were produced. In Table 6 the 
objective function values were compared to the ones found in Araya et al. (2007) and Gelmi et al. 
(2002). 

Statistical significance 

In this section we present the t-values and confidence intervals for the estimated set of 14 and 9 
parameters, while also comparing our t-values to those reported by Araya et al. (2007). 

To perform a fair comparison, we calculated the standard deviations for all three parameter sets using 
the same method described in Methods. For all three parameter sets, t-values are displayed in Table 2, 
Table 3, Table 4 and Table 5, and confidence intervals are shown in Figure 6 for all four conditions. In 
the case of the full set of 14 parameters, we calculated all 14 standard deviations leading to an (14 x 
14)-FIM matrix, whereas only the statistical information of the 9 relevant parameters is compared. In 
the case of the 14 parameters found by Araya et al. (2007) the same 5 parameters were held fixed 
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leading to a (9 x 9)-FIM matrix for the remaining nine in order to make their estimates comparable to 
ours. 

First of all, it can be seen that the significance generally increased by reducing the number of 
parameters (Table 2, Table 3, Table 4 and Table 5, t-value (14 par.) versus t-value (9 par.)). The 
reduced parameter set features greater t-values and smaller confidence intervals. However, the 
resulting confidence intervals are only trustworthy if the reliability of the fixed values is proven in the 
literature or by independent experiments. In this research, only µmax was able to be assigned reliably. In 
general, the significance of the parameters found by Araya et al. (2007) was comparable to the one 
found in this research (Table 2, Table 3, Table 4 and Table 5, t-value (OCFE) versus t-value (14 par.)). 
Therefore, in this case the parameters will have similar confidence intervals. 

Significance problems only occurred in the case of ki, where its confidence intervals were extremely 
large compared to its estimated value. As a solution, the sensitivity analysis can help us to plan future 
experiments so that ki can be estimated reliably by sampling more frequently in the zone where 
dGA3/dki is most sensitive (i.e., t > 50 hrs, see Figure 1, column GA3, parameter ki). 

CONCLUDING REMARKS  

The Scatter Search algorithm proved to be an effective and easy tool to handle a global minimization 
problem for a typical biologic dynamic model. Regression diagnostics are crucial tools to validate and 
modify the model, as they could eradicate important correlations between parameters and reduce the 
model’s uncertainty. Furthermore, the diagnostic methods could give us important recommendations 
regarding sampling times for further experiments; this will help to obtain unique parameter estimates 
and will increase the statistical significance of the model. 
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APPENDIX 
FIGURES 

 

 

 

Fig. 1 Iterative cycle of linking data to models. 

 

 

 

 

 

 

 

Fig. 2 Parameter calibration for culture condition 1. 
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Fig. 3 Parameter calibration for culture condition 2. 

 

 

 

 

 

 

 

Fig. 4 Parameter calibration for culture condition 3. 
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Fig. 5 Parameter calibration for culture condition 4. 
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Fig. 6 Confidence intervals of the different parameter sets. 
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Fig. 7 Time-dependent sensitivities for culture condition 1. 
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APPENDIX 
TABLES 

 

Table 1. Fixed parameters for each condition. 

Parameter Condition 1 Condition 2 Condition 3 Condition 4 

 
SSm OCFE SSm OCFE SSm OCFE SSm OCFE 

µmax (1/h) 0.21 0.1832 0.23 0.2253 0.19 0.1868 0.195 0.1968 

YX/CO2 (g X/g CO2) 1.2 1.8 1.96 0.79 0.745 0.171 1.173 0.67 

YX/O2 (g X/g O2) 2.6 3.7 3.8 2.4 1.22 0.38 2.6 2 

kp (1/h) 0 4E-009 0 2E-008 0 4E-010 0 1E-009 

YX/S (g X/g S) 0.9 1.4 0.183 0.151 0.101 0.043 0.18 0.18 

 

 

 

 

 

 

 
Table 2. Estimates and statistical parameters for cultivation condition 1. 

Parameter Value OCFE Value t-val (OCFE) t-val (14 par.) t-val (9 par.) 

kd (1/h) 2.824E - 002 2.430E - 002 2.91E + 001 1.54E + 001 2.02E + 001 

k (g/h) 1.290E - 004 1.287E - 004 2.77E + 001 2.77E + 001 2.79E + 001 

2COm  (g CO2/g X h) 1.366E - 001 1.320E - 001 2.74E + 001 9.00E + 000 2.04E + 001 

2Om  (g O2/g X h) 5.527E - 002 5.400E - 002 2.67E + 001 8.26E + 000 1.98E + 001 

/ IX NY  (g X/g NI g.i.s.) 2.086E + 001 2.030E + 001 3.48E + 001 3.14E + 001 3.22E + 001 

kn (g NI / g.i.s.) 7.481E - 004 4.600E - 004 1.24E + 001 1.15E + 000 1.44E + 001 

βetam (g GA3/g X h) 5.326E - 004 4.500E - 004 1.23E + 001 5.58E + 000 8.66E + 000 

KI (g NI /g.i.s.) 8.898E + 004 8.000E + 005 1.63E + 000 9.20E - 001 1.59E + 000 

Sm  (g S/g X h) 9.613E - 002 9.900E - 002 1.06E + 001 2.75E + 000 9.06E + 000 

g.i.s.: grams of inert support. 
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Table 3. Estimates and statistical parameters for cultivation condition 2. 

Parameter Value OCFE Value t-val (OCFE) t-val (14 par.) t-val (9 par.) 

kd (1/h) 1.942E - 002 3.300E - 002 1.04E + 001 1.17E + 001 1.99E + 001 

k   (g/h) 4.874E - 004 3.529E - 004 9.11E + 000 1.97E + 002 1.97E + 002 

2COm  (g CO2/g X h) 1.274E - 001 1.250E - 001 8.08E + 000 7.63E + 000 1.10E + 001 

2Om  (g O2/g X h) 5.422E - 002 5.900E - 002 8.54E + 000 8.05E + 000 1.09E + 001 

/ IX NY  (g X/g NI g.i.s.) 1.409E + 001 1.700E + 001 1.32E + 001 9.80E + 000 1.13E + 001 

kn (g NI / g.i.s.) 1.019E - 004 6.300E - 004 1.00E + 001 3.65E + 000 5.54E + 000 

βetam (g GA3/g X h) 2.247E - 004 2.800E - 004 4.99E + 000 2.65E + 000 4.85E + 000 

KI   (g NI /g.i.s.) 1.780E + 005 1.000E + 003 6.17E - 001 1.59E - 001 6.53E - 002 

Sm  (g S/g X h) 5.233E - 002 4.000E - 002 3.64E - 001 5.76E + 000 2.33E + 000 

g.i.s.: grams of inert support. 
 
 
 
 
 
 
 

Table 4. Estimates and statistical parameters for cultivation condition 3. 

Parameter Value OCFE Value t-val (OCFE) t-val (14 par.) t-val (9 par.) 

kd (1/h)  1.001E - 002 2.710E - 002 3.93E + 000 2.58E + 000 4.94E + 000 

k (g/h) 1.485E - 004 1.553E - 004 1.35E + 001 1.42E + 001 1.42E + 001 

2COm  (g CO2/g X h) 
2.047E - 001 2.400E - 001 4.28E + 000 4.18E + 000 9.93E + 000 

2Om  (g O2/g X h) 
1.154E - 001 1.500E - 001 4.56E + 000 4.55E + 000 1.07E + 001 

/ IX NY  (g X/g NI g.i.s.)  
6.731E + 000 6.300E + 000 1.31E + 001 2.41E + 001 2.57E + 001 

kn (g NI / g.i.s.) 1.832E - 004 7.700E - 004 8.46E + 000 3.27E - 001 3.63E + 000 

βetam (g GA3/g X h) 9.969E - 004 2.400E - 003 2.46E + 000 5.36E + 000 8.16E + 000 

KI (g NI /g.i.s.) 8.872E + 005 1.900E + 004 9.14E - 001 1.95E - 001 7.28E - 001 

Sm  (g S/g X h) 
5.000E - 001 3.300E - 001 3.11E + 000 4.22E + 000 8.99E + 000 

 g.i.s.: grams of inert support. 
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Table 5. Estimates and statistical parameters for cultivation condition 4. 

Parameter Value OCFE Value t-val (OCFE) t-val (14 par.) t-val (9 par.) 

kd (1/h) 1.431E - 002 2.470E - 002 9.45E + 000 6.27E + 000 8.28E + 000 

k (g/h) 1.246E - 004 1.243E - 004 1.19E + 001 1.19E + 001 1.20E + 001 

2COm  (g CO2/g X h) 1.634E - 001 1.960E - 001 1.21E + 001 7.60E + 000 1.50E + 001 

2Om  (g O2/g X h) 7.745E - 002 1.020E - 001 1.23E + 001 7.85E + 000 1.56E + 001 

/ IX NY  (g X/g NI g.i.s.) 1.078E + 001 1.060E + 001 3.12E + 001 5.50E + 001 5.52E + 001 

kn (g NI / g.i.s.) 1.269E - 004 2.600E - 004 7.56E + 000 2.97E - 001 5.24E + 000 

βetam (g GA3/g X h) 4.901E - 004 9.100E - 004 7.19E + 000 6.35E + 000 9.82E + 000 

KI (g NI /g.i.s.) 2.624E + 005 1.000E + 007 3.36E - 001 1.39E - 001 3.21E - 001 

Sm  (g S/g X h) 1.641E - 001 1.700E - 001 9.08E + 000 4.16E + 000 9.27E + 000 

g.i.s.: grams of inert support. 

 

 

 

 

 
Table 6. Objective function of the optimization for all cultivation conditions. 

Condition fobjSMM fobjOCFE fobjGELMI 

1 0.006381 0.006429 0.008763 

2 0.013460 0.024046 0.013539 

3 0.004888 0.007480 0.015695 

4 0.004617 0.005526 0.006327 

 


