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Background: Salep is obtained by grinding dried orchid tubers and used as a valuable ingredient in the food
industry. Because of the glucomannan content of salep, it is thought to have prebiotic potential. However,
there is little information in studies concerning the fermentation characteristics and potential prebiotic
properties of salep. The objective of this study was to investigate the effect of salep on bifidobacterial growth
by measuring the highest optical density (OD), calculating the specific growth rates, and determining the
production of lactic acid and short-chain fatty acids (acetic, propionic, and butyric acid) as a result of bacterial
fermentation.
Result: The OD and pH values obtained in this study showed that salep was utilized as a source of assimilable
carbon and energy by the Bifidobacterium species (BS). All Bifidobacterium strains produced lactic, acetic,
propionic, and butyric acid, indicating that salep is readily fermented by these bacteria. Salep at 1%(w/v)
showed a similar effect on bifidobacterial growth as that promoted by 1% (w/v) glucose used as a traditional
carbon source.
Conclusions: Bifidobacterium species can develop in media containing salep as well as in glucose and exhibit the
potential to be used as new sources of prebiotics.
How to cite: Usta-Gorgun B, Yilmaz-Ersan L. Short-chain fatty acid production by the Bifidobacterium species in
the presence of salep. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.06.004.
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1. Introduction

In recent years, there has been increasing evidence implicating
short-chain fatty acids (SCFAs) as critical contributors to human
health. Short-chain fatty acids are defined by The International Union
of Pure and Applied Chemistry (IUPAC) as “carboxylic acids containing
aliphatic tails less than 6 carbon atoms.” Common SCFAs are formic
acid (C1: methanoic), acetic acid (C2:ethanoic), propionic acid (C3:
propanoic), isobutyric acid (C4:2-methylpropanoic), butyric acid (C4:
butanoic), isovaleric acid (C5:3-methylbutanoic), valeric acid (C5:
pentanoic), and 2-methylbutanoic acid (C5). Acetic, propionic, and
butyric acids are the major end metabolites produced as a result of the
intestinal microbial fermentation of predominantly nondigestible
dietary carbohydrates, simple sugars, sugar alcohols, unabsorbed or
undigested proteins, and endogenous substrates [1,2,3,4,5,6].

Short-chain fatty acids exert multiple positive effects to maintain
human wellbeing. The positive metabolic health effects of SCFAs are i)
n).
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an essential factor in maintaining gut integrity, ii) a reduction in the
luminal pH, iii) inhibiting putrefactive and pathogenic bacteria, iv)
protecting the integrity of intestinal epithelial cells from mechanical,
chemical, and microbial damage, v) increasing mineral bioavailability,
vi) supplying energy to the intestinal mucosa, vii) stimulating the
host's immune system, viii) decreasing the risk of infectious intestinal
disease, and ix) having an anti-inflammatory and an antitumorigenic
role [2,7,8,9,10,11,12,13,14].

The production of SCFAs may be modulated by a number of factors,
including the numbers and types of microbiota present in dietary
intake, substrate source, and gut transit time. Probiotics, prebiotics,
and a combination of the two (synbiotic) in particular, play a most
important role in the formation of SCFAs. Probiotics are live
microorganisms that, when administered in adequate amounts, confer
a health benefit on the host (FAO/WHO 2014). Prebiotics are
substrates resistant to hydrolysis and digestion in the stomach and
small intestine, and they stimulate the growth of potentially probiotic
bacteria such as Bifidobacterium and Lactobacilli species, thus they
exert health-promoting effects. Lactobacilli can produce end products,
such as pyruvate, by the fermentation of carbohydrates during the
glycolytic metabolic pathway, while Bifidobacteria can produce mainly
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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acetate and formate by using the fermentation pathway. Because of the
beneficial health effects of probiotics, prebiotics, and their metabolites,
they are used as food supplements or the SCFA producer, and
Bifidobacteria/Lactobacilli are added into solution, such as in yogurt. In
addition, researchers are interested in the development of
commercially available prebiotics and their metabolites in in vitro and
in vivo media [3,15,16,17,18,19,20].

Prebiotic substances are present naturally in fruits, vegetables, plant
roots, and seeds such as artichoke, chicory root, raw banana, yam, garlic,
onion, leek, wheat bran, and asparagus. Commercial prebiotics like
inulin, fructooligosaccharides, oligofructose, and (trans-)
galactooligosaccharides (TOS or GOS) were derived through
biochemical and/or enzymatic techniques from these foods.
Orchidaceae commonly known as the orchid family are mostly
cultivated as beautiful flowers having floricultural and commercial use
as well as medicinal importance. These flowers have an estimated 800
genera including nearly 25,000 species. Salep, a Turkish word (Greek
“salapi”/Arabic word “sahlab”), is obtained from the dried roots or
tubers of the Orchidaceae [21,22,23,24,25,26]. Ophrys, Orchis,
Himantoglossum, Serapias, Ana-camptis, Compreria, Barlia,
Dactylorhiza, Aceras, and Neotinea naturally grown in Turkey have
been used for the production of salep. Salep has been used
traditionally as a therapeutic ingredient to treat diarrhea, tuberculosis,
Parkinson's disease, cancer, fever, and enhance sexual activity. It is
also used industrially as a thickening and flavoring agent, as an
emulsifier and stabilizer in ice cream production, confectionery, and
beverages [27,28,29,30,31,32]. Although the components of salep vary
according to the season of collection and orchid species, generally it
contains mucilage (48%), moisture (12%), sugar (1%), starch (3%),
nitrogenous substance (5%), ash (2%), and glucomannan (16–60%).
Glucomannan, a water-soluble polysaccharide, is highly fermented by
bacteria in the colon; thus, foods containing glucomannan have been
classified as “emerging prebiotics” owing to their potential for this
type of application [29,33,34,35,36,37]. However, salep may be
fermented by probiotic microorganisms probably because of its
glucomannan content (from 16% to 60%). Usta and Yilmaz-Ersan [38]
reported that the ability of salep to support bifidobacterial growth has
been demonstrated.

In recent years, probiotics, prebiotics, and synbiotics are the best
documented substances with the potential to generate SCFAs. In fact,
this ability to produce SCFAs by both probiotic and prebiotic means is
analyzed under fecal microbiota in a model system of the human
colon. To date, there are limited experimental studies in vitro that
have quantified the production of SCFAs specifically related to the use
of prebiotics [39,40,41,42,43,44,45,46]. The objectives of this research
were to study the effect of salep on the growth kinetics of four
Bifidobacterium species (BS), their ability to produce lactic acid, and
SCFAs: acetic, propionic, and butyric acids, and the effect of a synbiotic
of salep and probiotic bacteria in vitro.

2. Materials and methods

2.1. Bacterial strains

The bacteria used in this study are listed in Table 1. These strainswere
obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany) and activated at 37°C
Table 1
Bifidobacterium species used in this study.

Microorganisms Strain

Bifidobacterium longum subsp. infantis DSM 20288
Bifidobacterium animalis subsp. lactis DSM 10140
Bifidobacterium longum subsp. longum DSM 20219
Bifidobacterium bifidum DSM 20239
using an anerobic atmosphere generation system (Anaerocult A, Merck,
Darmstadt, Germany).

2.2. Preparation of the salep solution

Salep from orchids grown in different regions of Turkey was used in
this study. It was obtained from Kadem Sahlepcilik (Istanbul, Turkey).
Salep contains 88.72% dry matter, 4.55% ash, 6.71% protein, 1.90%
carbohydrate, and 6.75% dietary fiber. Stock solutions of salep (10% w/
v) were prepared by modifying them according to the method
suggested by Kaplan and Hutkins [47]. The salep solution was
sterilized using a Millipore-Stericup-GP 0.45 μm filtration system.

2.3. Growth conditions

Tryptone Peptone Yeast Extract (TPY) was used in this study as the
basal medium containing peptone (5.00 g L−1), yeast extract (2.50 g
L−1), glucose (5.00 g L−1), Tween 80 (1.00 g L−1), K2HPO4·3H2O (2.00
g L−1), MgCl2 (0.50 g L−1), ZnSO4·7H2O (0.20 g L−1), CaCl2 (0.15 g L−
1), FeCl3·6H2O (0.003 g L−1), and L-cysteine HCl (0.50 g L−1). The
medium was sterilized at 121°C for 15 min. Then, 1% and 2% (w/v)
sterile salep solutions were added into the basal TPY medium to
obtain the final concentrations. TPY without carbohydrates was used
as the negative control, while TPY with 1% (w/v) glucose served as the
positive control. An overnight culture of 2% (v/v) Bifidobacterium spp.
was added to the basal media.

2.4. Measurement of pH

The pH of each sample was determined during fermentation using a
pH-meter (pH 315i/SET; WTW, Germany).

2.5. Growth measurement

The optical density (OD) or cell density of the bacteria was
determined at a wavelength of 600 nm (OD600) with a
spectrophotometer (Shimadzu UV 1800, Kyoto, Japan) during
fermentation. The corresponding sterile TPY solutions without
bacteria were used as blanks for the absorbance measurements.

2.6. Growth rate

The growth rate of each microorganism was calculated using the
following equation [48]:

Growth rate :

OD of latest fermentation time–OD of previous fermentation time
OD of previous fermentation time

2.7. Lactic acid and SCFA analyses

To evaluate the efficiency of the fermentation of salep by the
Bifidobacterium spp., high performance liquid chromatography (HPLC)
was performed. Lactic, acetic, propionic, and butyric acids can be
detected in the growth medium and quantified by HPLC (Shimadzu
marka LC-20 AD, Japan). The HPLC equipment consisted of a
Transgenomics ORH-801 column and a refractive index detector
(Shimadzu, Kyoto, Japan) connected to a recorder. Samples were
filtered through a 0.45-μm syringe filter before injecting into the HPLC
column. The injection volume was 20 μL. The mobile phase used was
0.0025NH2SO4 at a flow rate of 0.6 mL min−1 at 65°C. Calibration
curves including a broad concentration range were analyzed for lactic,
acetic, propionic, and butyric acids. For each acid, validation
parameters such as the limit of quantification, limit of detection, and



Table 2
Changes in maximum OD and final pH values between substrates.

Strains ODmax Final culture pH

Control Glucose (1%) Salep (1%) Salep (2%) Control Glucose (1%) Salep (1%) Salep (2%)

B. bifidum 0.118cC 1.049bC 1.152aB 0.657bD 5.93aA 4.60cA 5.23bA 4.62cA

B. infantis 0.331cA 1.630aB 1.230bA 1.049bA 5.45aC 3.52cD 4.32bD 4.23bB

B. lactis 0.088dD 1.836aA 1.129bC 0.748cC 5.75aB 4.08dC 4.69bC 4.27cB

B. longum 0.258cB 1.067aC 1.083aD 0.998bB 5.94aA 4.29dB 5.04bB 4.61cA

Significance level, significant at p b 0.01(**), different lower-case letter indicates different substrates; different uppercase letter indicates different strains.
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linearity were determined according to FDA documents [49]. Peak
retention times describing pure standard of each acid were
determined. For the correct identification of peaks, standard mixture
acid solution was also added to each sample extract. For repeatability
of the method, relative standard deviation values for the responses of
the retention times obtained from standard solution mixtures
containing different levels of acid were calculated.

2.8. Statistical analyses

Statistical analyses were performed with Minitab 17.0 statistic
package for Windows, and the data were compared using variance of
analysis (ANOVA). The LSD Multiple Range test was used for multiple
comparisons. The difference was used to determine the effect of the
substrate type, strain type, and fermentation on the lactic acid and
short-chain fatty acid contents. Different letters were used to label
values with statistically significant differences. The hierarchical cluster
analysis, which highlights intuitively similar relationships between
any one sample and the entire data set, was performed following an
unweighted pair group method with an arithmetic average based on a
dissimilarity matrix using JMP 7 software.

3. Results and discussion

When fermentation substrates such as prebiotics are consumed by
both animals and humans, the acidity in the colon decreases
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Fig. 1. Specific growth rates (h−1) of Bifidobacterium species. Significance level, significant at p
letters indicate different strains.
depending on the structure and dose of the prebiotics. Lower pH
values result in a decrease in the growth of pathogenic bacteria and an
increase in the growth of beneficial microbiota (e.g., Bifidobacteria and
Lactobacilli) [8]. Thus, pH is a critical value to assess the effectiveness
of candidate prebiotics in in vitro and in vivomodels. To determine the
fermentability of salep by some Bifidobacteria, their maximum OD and
final pH values obtained from this study during the growth of these
strains on different substrates at 37°C for 48 h, are shown in Table 2.
The results are presented as the mean value of the BS and the mean
value of each substrate. For all parameters, significant differences were
detected (p b 0.01). It was determined that glucose, which is
metabolized quickly by probiotics as a nonprebiotic simple carbon
source, had the lowest pH value, while media containing 2% salep had
the second lowest value. Of the four species when compared with the
media containing salep, B. infantis grew the fastest and recorded the
lowest pH value. The sample with B. lactis in the media that contained
2% salep had the next lowest pH value. According to the results of this
study, a decrease in pH values was found due to salep being
metabolized by the BS. These results are in agreement with those
reported by Kaplan and Hutkins [47], Tzortzis et al. [50], and Mumcu
and Temiz [51]. As shown in Table 2, B. bifidum and B. longum in
media containing 1% salep had a higher cell density value than the
other substrates. Regarding the strains, the highest value of OD was
recorded for B. lactis, followed by the B. infantis in the media with
glucose. The OD values of BS grown in media with 1% salep were
similar to those of glucose; thus, it could be said that salep is used by
B. lactis B. longum
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Table 3
Lactic, acetic, propionic, and butyric acid production by Bifidobacterium species in different
substrates during 48 h fermentation.

N Lactic acid Acetic acid Propionic acid Butyric acid

Substrate type (ST)
Control 24 0.399dA 0.355dB 0.039cD 0.144bC

Glucose (1%) 24 0.877aA 0.698aB 0.087aD 0.170aC

Salep (1%) 24 0.520bB 0.535bA 0.043bD 0.114cC

Salep (2%) 24 0.450cB 0.527cA 0.044bD 0.052dC

Bifidobacterium species (BS)
B. bifidum 24 0.499cA 0.308cB 0.095aD 0.129bC

B. lactis 24 0.319dB 0.744bA 0.044cD 0.095dC

B. infantis 24 0.862aA 0.818aB 0.046bD 0.121cC

B. longum 24 0.567bA 0.245dB 0.028dD 0.134aC

Fermentation time (FT; hours)
0 32 0.109cB 0.278cA 0.035cD 0.061cC

24 32 0.559bA 0.516bB 0.042bD 0.152aC

48 32 1.016aA 0.792aB 0.083aD 0.147bC

ANOVA
Substrate type (ST) ** ** ** **
Bifidobacterium species
(BS)

** ** ** **

Fermentation time (FT) ** ** ** **
ST × BS ** ** ** **
ST × FT ** ** ** **
BS × FT ** ** ** **
ST × BS × FT ** ** ** **

ST = substrate type; BS = Bifidobacterium species; FT = fermentation time; ST × BS =
interaction between substrate type and Bifidobacterium species; ST × FT = interaction
between substrate type and fermentation time; BS × FT = interaction between
Bifidobacterium species and fermentation time; ST × BS × FT = interaction among
substrate type, Bifidobacterium species and fermentation time; Significance level,
significant at P b 0.01(**), different lower case on the same column indicate significant
differences; different uppercase letter on the same line indicate significant differences.
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BS as a source of carbon and energy. The cell density values determined
in the study were similar to Lee et al. [52], Holt et al. [53], Maischberger
et al. [54], and Yang et al. [55].

The calculated specific growth rate in bacterial populations with the
substrates tested are presented in Fig. 1. The highest specific growth
rates were recorded with B. lactis grown in media containing glucose,
followed by B. bifidum, and then B. infantis in media containing 1%
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Fig. 2. Total short-chain fatty acid production by Bifidobacterium s
salep. The negative control, containing no additional carbohydrate,
had minimal specific growth rates. From the data presented in Fig. 1,
salep is used by BS as a carbon source to promote growth.

The amounts of lactic, acetic, propionic, and butyric acid are shown
in Table 3. The results are presented as the mean value of each
fermentation time (FT), regardless of the substrate type (ST) and BS.
For all parameters at all times, a significant interaction was detected
(p b 0.01). There were significant differences (p b 0.01) within the
level of acid contents for substrates and species. Regarding the
fermentation time, higher values were recorded for lactic and acetic
acid compared to propionic and butyric acid. The tested acids
increased significantly (p b 0.01) during the 48 h fermentation as a
result of the bifidobacterial enzymes. Lactic acid produced by
Lactobacilli, Bifidobacteria, Enterococci, Streptococci, and Eubacterium in
the gastrointestinal tract is a major organic acid in the fermentation
process of prebiotics. As it is further metabolized to acetate or
butyrate and propionate, respectively, by cross-feeding species –
particularly with the butyrate-producing bacteria – it does not
substantially accumulate in the colonic lumen. According to the results
of this study, lactic acid was the most abundantly produced metabolite
for all the tested substrates and strains. The concentration of lactic
acid ranged from 0.319 g L−1 for B. lactis to 0.877 g L−1 for media with
1% glucose, depending on the strain and type of substrate. B. infantis
produced the highest lactic acid among the tested strains (Table 3).
Barczynska et al. [56] reported that the amount of lactic acid was
determined to be 109.3 mg 100 mL−1 for B. bifidum Bb12 and 108.8
mg 100 mL−1 for B. animalis DN–173 010 in the broth containing the
tartaric acid-dextrin. Acetic acid, a precursor for lipogenesis and
cholesterol synthesis, stimulates anti-inflammatory responses and
reduces the appetite because of its interaction with the central
nervous system [2,57]. It is normally produced by Lactobacilli and
Bifidobacteria [58]. Using the bifidus pathway Bifidobacteria produce
more ATP from carbohydrates than homo and heterofermentative
pathways. Theoretically an acetate: lactate ratio of 1.5:1 mol from 1
mol of glucose can be produced by the bifidus pathway. But
researchers reported that such acetate: lactate ratios are impossible in
practice, as pyruvic acid is converted into formic acid and ethanol
rather than into lactic acid by some Bifidobacteria [59]. The acetic acid
concentrations depended on the strain and substrate type. It ranged
from 0.245 g L−1 for B. longum to 0.818 g L−1 for B. infantis. Generally,
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during the whole fermentation progress, samples – including salep
powder – exhibited a lower acetic acid value than glucose. Acetic acid
content was determined to be 19.1 mg 100 mL−1 for B. bifidum Bb12
and 16.9 mg 100 mL−1 for B.animalis DN–173 010 [56]. Propionic acid
produced from fermentable substrates has anticholesterol and
anticarcinogenic health effects [60,61]. Propionic acid contents ranged
from 0.028 g L−1 for B. longum to 0.095 g L−1 for B. bifidum. For
substrate types, the maximum propionic acid value was observed in
media with glucose. Barczynska et al. [56] reported that a propionic
acid content of 4.5 mg 100 mL−1 for B. bifidum Bb12 and 4.6 mg 100
mL−1 for B. animalis DN–173 010 was found in the broth containing
the tartaric acid-dextrin as the only source of carbon after a 24-hour
incubation. The production of butyrate, an important SCFA, is the main
energy source for epithelial cells. It can reduce inflammation,
carcinogenesis, oxidative stress, and improves the intestinal barrier
function and colonic health [13,62,63,64]. For the tested BS, the
maximum butyric acid value was observed for B. longum, while media
with glucose had a higher butyric acid value than others. SCFA values
Fig. 4. Cluster analysis
obtained in this study were similar to the results reported by Vulevic
et al. [65] using sucrose, guar gum, FOS and TOS, Haddadin [66] using
olive leaf extract, and Khaleel and Haddadin [67] using Hawthorn leaf
extracts.

SCFAs are produced by different bacterial species possessing specific
enzymes through the glycolytic pathway. As every bacterial species has
its own characteristic profile of SCFA products, these are often used in
species identification. Bifidobacteria are unable to make use of the
usual glycolytic pathway or the hexose monophosphate shunt
pathway due to a lack of aldolase and glucose-6-phosphate NADP+
oxidoreductase. Bifidobacteria produce mainly acetic and lactic acids
by using the pentose phosphate pathway in the presence of fructose-
6-phosphate phosphoketolase (F6PPK), while Lactobacilli can produce
pyruvate by the fermentation of carbohydrates through the glycolytic
pathway and also by the phosphoketolase pathway under
heterofermenting conditions [68,69,70]. In addition, SCFA production
is affected by several factors, including type and number of
microorganisms present in the colon, the source and chemical
of substrates used.

Image of Fig. 3
Image of Fig. 4
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structure of substrates, and the gut transit time [71]. Several studies
have shown that some prebiotic components such as oligofructose
and inulin are associated with a higher production of SCFA either in
vitro or in vivo [35,72,73,74,75,76,77,78]. The way in which total SCFAs
increase is an important parameter to evaluate the fermentation
capacity of microorganisms used in candidate prebiotic components.
Fig. 2 presents the variations in total SCFA values produced by the BS
samples during fermentation. There were significant differences in
total SCFA values among the strains depending on the ST used. At the
beginning of the fermentation process, the total SCFA values produced
by strains varied from 1.27 g L−1 for B. infantis to 1.94 g L−1 for B.
lactis; and thereafter, increased gradually throughout the fermentation
period. The largest increase in total SCFAs was observed for B. infantis
and B. lactis, respectively, because they have higher metabolic activity
than the others.

Vulevic et al. [65] stated that the prebiotic effect is associated with
lactic acid-producing microorganisms such as Bifidobacterium and
Lactobacilli species. To provide a qualitative as well as quantitative
assessment of each substrate tested, the ratio of lactic acid production
compared to the total SCFA production is calculated. The ΔL/
ΔTOTALSCFA of BS is presented in Fig. 3. For B. bifidum, the highest ratio
is produced by the substrate containing 2% salep. For B. lactis and B.
longum, the highest ratios were produced by the substrate with
glucose and 1% salep, respectively. B. longum samples had the highest
ΔL/ΔTOTALSCFA.

Hierarchical clustering was performed to determine if there was a
relationship for the different substrates between the growth of BS and
their ability to produce metabolites (Fig. 4). Cluster analysis was
tested using the values of the growth parameters OD, pH, lactic, acetic,
propionic, and butyric acid values, the total SCFA amounts and the ΔL/
ΔTOTALSCFA ratios obtained in this study. According to this analysis,
the glucose and different salep concentrations demonstrate some
differences on bifidobacterial growth. The salep samples (1% and 2%)
clustered together, while samples containing glucose formed a
separate cluster. The sample with 1% salep is closer to glucose –
namely the positive control – than the others.
4. Conclusions

Salep has been used in the food industry because of its techno-
functional properties such as a thickening, flavoring agent, emulsifier,
and stabilizer; it also has therapeutic importance in the prevention
and treatment of diseases. In this study, to determine the effect of
salep on the growth of probiotic bacteria such as BS as well as its
prebiotic potential was aimed. The results of this study demonstrated
that salep exhibited the potential to be used as a new source of
prebiotics, increasing the OD values of bifidobacterial cells, decreasing
pH values, and forming metabolic products (lactate, acetate,
propionate, and butyrate). However, these results only represent the
in vitro situation. More sophisticated studies conducting a human
volunteer trial using a large number of volunteers under more
controlled conditions, and in gut models using fecal microbiota, are
required to be able to describe salep as a new prebiotic food. Thus,
there is a need for comparative studies on the prebiotic properties of
salep using a standard protocol.
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