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Genetic manipulation of bacteria is a procedure necessary to obtain new strains that express peculiar and defined 
genetic determinants or to introduce genetic variants responsible for phenotypic modifications. This procedure 
can be applied to explore the biotechnological potential associated with environmental bacteria and to utilize 
the functional properties of specific genes when inserted into an appropriate host. In the past years, marine 
bacteria have received increasing attention because they represent a fascinating reservoir of genetic and 
functional diversity that can be utilized to fuel the bioeconomy sector. However, there is an urgent need for an 
in-depth investigation and improvement of the genetic manipulation tools applicable to marine strains 
because of the paucity of knowledge regarding this. This review aims to describe the genetic manipulation 
methods hitherto used in marine bacteria, thus highlighting the limiting factors of the different techniques 
available today to increase manipulation efficiency. In particular, we focus on methods of natural and artificial 
transformations (especially electroporation) and conjugation because they have been successfully applied to 
several marine strains. Finally, we emphasize that, to avoid failure, future work should be carried out to 
establish tailored methodologies for marine bacteria.
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1. Introduction

Microbial diversity present on the Earth is endless. Marine
microorganisms are a fascinating reservoir of genetic and functional
diversity, and their products could be utilized in many different
biotechnological sectors. For instance, they can produce bioactive
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natural compounds, enzymes useful for industrial applications,
or pharmaceutical agents with anticancer, antimicrobial, or anti-
inflammatory properties [1,2,3,4,5,6,7]. However, many marine
microorganisms remain unutilized because of the lack of efficient
isolation and/or cultivation methods and the consequence of the
inadequate genetic manipulation procedures available compared to
the those available for the culturable microorganisms [8,9]. The
importance of innovative and efficient methods for cultivating marine
bacteria for the biodiscovery pipeline has been thoroughly examined
[8]. Therefore, in this review, we consider the procedures involved in
genetically manipulating marine strains. Genetic manipulation (or
engineering) of microorganisms is generally applied to obtain new
strains that express additional genetic properties or to introduce
genetic variants with phenotypic alterations [10]. Particularly, one of
the most interesting applications in the field of marine microbiology is
the utilization of genetic manipulation methods to (i) explore the
enormous undiscovered source of genetic information associated with
the environmental samples through the screening of metagenomic
libraries expressed in suitable culturable marine hosts [11] and to
(ii) study the biotechnological potential of culturable marine strains
by investigating the expression and function of genes of interest
[12]. Heterologous expression of genes directly from environmental
metagenomes can be seen as an approach in principle that can
overcome the limitations because of the poor culturability of marine
strains. However, this technique has several disadvantages, as reviewed
by Lam et al. [13], and cannot entirely substitute the biotechnological
application of novel and manipulated marine microbial isolates,
especially regarding the poor efficiency of conventional hosts in
expressing genes derived from distantly related microorganisms.
Heterologous expression of metagenome-captured genes in novel,
nonconventional marine hosts could nevertheless improve the success
of the approach. Efficient gene transfer systems are therefore required
to improve the utilization of the biotechnological potential associated
with marine microbial strains, also considering advantages from the
recent technological improvements such as the next-generation DNA
sequencing techniques and single-cell genome analysis.

Prokaryotic cells naturally acquire exogenous DNA through different
pathways including transduction through bacteriophage infection [14,
15], conjugation mediated by cell–cell contact [16], or directly from
the environment through a natural physiological state of competence
developed by the bacterium [17]. Researchers utilized these natural
mechanisms of horizontal gene transfer (HGT) for cell manipulation.
In general, many studies investigated HGT through transformation
and conjugation rather than transduction. With regard to transduction
and considering marine environments, recent interest has been
directed toward a particular genetic exchange mechanism that is
active in natural environments and is mediated by virus-like elements
called as gene transfer agents (GTAs) and toward the evaluation of the
role of phage in spreading antibiotic resistance genes or in shaping the
microbial evolution and ecology [18,19,20,21].

Over the past decades, special attention has been focused on the gene
transfer by bacteria in a natural competent state [22,23], a time-limited
physiological state specifically developed by some species in response
to different external factors. Heretofore, more than 87 bacterial
species have been reported as being naturally competent to take up
extracellular genetic material [17,24]. The environment in which
bacteria thrive plays an important role in their adaptation and
evolution, which also influences their genetic transformation efficiency.
For instance, natural transformation in the marine environment was
demonstrated to occur more frequently in sediments than in the water
column owing to the capability of sediment particulates to protect DNA
from enzymatic degradation [23,25,26]. Meibom et al. [23] reported
that the presence of chitin, which is one of the most abundant
biopolymers in aquatic environments, promotes the development of
natural competence in Vibrio strains including the two pathogens
Vibrio cholerae and Vibrio vulnificus. Even under extreme marine
environments such as the brines of the deep hypersaline anoxic basins
(DHABs) of the Mediterranean Sea [27], naked DNA was demonstrated
to be preserved and to maintain the transforming potential of
competent cells [28]. The brines of DHABs constitute an extremely
aggressive environment for cells and macromolecules by providing
hypersaline, anoxic, and strong reducing conditions. Nevertheless,
plasmid DNA incubated in the brines of different DHABs up to 32 d
retained the capacity to transform the naturally competent
Acinetobacter baylyi BD413 cells [28].

To insert DNA into bacteria, different artificial methods have been
developed, including chemical and physical techniques. Because
homologous recombination of exogenous DNA in a host cell is limited
to sequences with high DNA similarity, shuttle vectors are preferred
to compel DNA entry into bacterial cells [29]. Plasmids are
extrachromosomal DNA elements that are usually transferred in
nature to both closely and distantly related bacterial species according
to their replication origin [30,31]. They are generally used as shuttle
vectors in electroporation and conjugation-based procedures owing
to their relative ease of manipulation. Certain bacteria remain
nevertheless recalcitrant to internalize and express exogenous
plasmid DNA [32]. Electroporation is a known, easy, and rapid tool to
successfully transform a large range of bacteria, but it is still
unsuitable for several marine species [33]. In the following sections,
we aim to summarize the currently used methods for the genetic
manipulation of marine bacteria and to emphasize the limitations
that could prevent the success of the methods. Specifically, we
consider natural and artificial transformations and conjugation-based
procedures because these methods have been adopted in the majority
of the studies on manipulating marine bacteria (Fig. 1, Table 1).

2. Natural competence of marine bacteria

Mechanisms underpinning natural genetic transformation have
been described in several bacterial strains, i.e., the human pathogenic
strains Haemophilus influenzae and Streptococcus pneumoniae and the
model organism of gram-positive bacteria Bacillus subtilis [34].
Moreover, natural transformation has been studied in relation to the
genome evolution in the environmental natural-competent species
A. baylyi [35]. In aquatic environments, natural transformation occurs
favorably in the presence of free DNA [36] and naturally competent
cells [37]. Nevertheless, only a limited number of studies have
investigated this process in marine isolates, considering only few
species [23,38]. In 1989, Stewart and Sinigalliano [38] showed for the
first time that natural transformation could occur in a marine
bacterium and regarded the strain Pseudomonas stutzeri ZoBell as the
first naturally transformable marine model. Frischer et al. [39] focused
on the chemical and physical factors that affect competence in the
marine strain Vibrio WJT-1C (later identified as Pseudomonas sp. [40]).
In this strain, natural competence arises at the early exponential phase
and lasts almost 10 d. The authors verified that its transformation
efficiency was not susceptible to the environmental variations
typical of the estuarine environment, such as temperature, nutrient
concentration, and salinity shifts, thus suggesting that this
environment represented, for the considered strain, a suitable niche of
natural transformation [39].

Many studies on natural transformation focused on the genus Vibrio
[23,41] (Table 1 and Table 2) and, particularly, on V. cholerae. In addition
to being a human pathogen, V. cholerae is an inhabitant of the aquatic
environment [42], where it has been described as a good colonizer of
chitin-based surfaces [43]. Chitin is the major constituent of copepod
exoskeletons, crab shells, and diatoms [44,45]. It represents an
important nutrient source for chitinolytic bacteria including those
belonging to the family Vibrionaceae. Indeed, they can break the chitin
down into soluble subunits of N-acetylglucosamine (GlcNAc) and
chitobiose (GlcNAc2) and use it as a sole source of carbon [23,44,45,
46]. Meibom et al. [23] discovered that chitin plays another intriguing



Fig. 1. Schematic representation of the workflow for the genetic manipulation of bacteria by natural transformation (including single and multiple genome editing), chemical
transformation, electroporation, and conjugation.
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role in Vibrio by making it competent to uptake exogenous DNA. After
this discovery, the molecular mechanisms behind the competence
state in V. cholerae were explored in detail [47,48,49,50,51]. In
particular, it has been shown that the bacterial regulatory network
harmonizes the response of cells to starvation, hence activating
competence through three extracellular systems. The first system
responds to chitin and activates the transcription of the regulatory
gene tfoX [52], which in turn regulates the activation of enzymes
involved in the degradation of chitin into soluble forms. Then, the
TfoX-induced genes, as well as other components, regulate the
production of the components of the DNA-uptake machinery
including a central type IV pilus structure [23]. The second system
responds to high cellular density. A quorum-sensing regulator
Table 1
Gene transfer systems used for marine bacteria. Advantages and criticisms of the procedures are
have been successfully applied.

Gene transfer
system

Advantages Criticisms

Natural
transformation

– Easy procedure;
– Well-established method for Vibrio
strains (chitin-based protocol)

– Time-consuming proced
– It requires natural comp
– It requires large amount

Chemical
transformation

– Easy procedure – Dependent on the restric
endonucleases of the recip
– It requires chemical com

Electroporation – Well-established and quick method;
– Applied on a broad range of species
including bacteria and archaea;
– High efficient transformation procedure;
– It requires small amount of DNA

– Low success rate;
– Dependent on the restric
endonucleases of the recip
– Affected by the presence
composition of media and
– Affected by topology, siz
and concentration of DNA
– Affected by field strength
– It requires electrocompe

Conjugation – Well-established method;
– It bypasses restriction endonuclease
barrier of the bacterial host

– Laborious (time-consum
– Possible issues in the sel
transconjugants after mati
promotes the expression of the hapR gene [23,51,53,54], which
represses the expression of the extracellular nuclease Dns and
regulates the activation of genes necessary for natural transformation
[55,56]. A third extracellular nucleoside system allows the expression
of the protein CytR, which functions as an additional positive regulator
for competence acquisition [57]. The natural competence state has
also been identified among isolates belonging to other Vibrio species
such as Vibrio parahaemolyticus [58], V. vulnificus [59], and Vibrio
fischeri [60].

Although chitin is able to induce competence in different
Vibrio species, the competence apparatus does not seem to be
conserved. Comparison of genomic sequences showed that an
additional TfoX-like protein, designated as TfoY, is present in
listed, togetherwith the names and references of selected bacterial species onwhich they

Examples of bacterial species/groups on which successfully
applied

ure;
etent cells;
s of DNA

– Vibrio cholerae, V. fischeri, V. parahaemolyticus, V. vulnificus
[23,58,59,61].
– Pseudomonas stutzeri ZoBell [38]

tion
ient bacterium;
petent cells

– V. natriegens [73]

tion
ient bacterium;
of salt and
buffers;
e,

;
tent cells

– V. cholerae, V. parahaemolyticus, V. alginolyticus, V. natriegens,
V. vulnificus, V. anguillarum [70,71,72,73,85].
– Pasteurella piscicida, Roseobacter clade; Pseudoalteromonas
PS1M3, Caulobacter crescentus, Synechococcus sp. CC9311,
Halomonas sp. O-1 [72,73,77,81,82,83,84,96]

ing method);
ection of
ng

– V. cholerae, V. vulnificus, V. parahaemolyticus, V. alginolyticus [127].
– Pseudoalteromonas sp. SM9913, Roseobacter clade, Prochlorococcus
MIT9313,Marinobacter adhaerens HP15 [33,72,127,128,132,133].



Table 2
List of selected genetically manipulated marine bacteria mentioned in the review.

Bacterial species or
strains

Vectora Methods of
manipulation

Characteristics
of the introduced
DNA

Expressed genes Technological interest Ref.

Bacillus marinus
B-9987

– Unmethylated p3101GFP
(derivative plasmid of pHT3101;
Emr)

Electroporation Circular plasmid Gfp Developing an efficient
electroporation method for
marine-derived Bacillus strains

[77]

– Unmethylated p3101SFP
(derivative plasmid of pHT3101;
Emr)

Electroporation Circular plasmid Expression of the sfp gene, a
gene essential for the
biosynthesis of polyketides and
nonribosomal peptide antibiotics

Developing an efficient
electroporation method for
marine-derived Bacillus strains

[77]

Dinoroseobacter
shibae DFL12T

pEX18Δdnr::Gmr (Gmr; Ampr;
sacB; lacZ; suicide vector)

Conjugation with
E. coli ST18

With homology to
the chromosome

Replace dnr gene with the
gentamicin resistance gene

Obtaining a gene knockout to
study the influence of the regulator
Dnr on the bacterial growth under
denitrifying conditions

[72]

Fischerella and
Chlorogloeopsis
strains

pRL25C (and eventually helper
strains pRL443, pRL623),

Electroporation,
conjugation, and
DNA bombardment

Circular plasmid Antibiotic resistance genes Developing a geneticmanipulation
system for the strains

[97]

Halomonas sp. O-1 – pBBR1MCS (Broad host range
plasmid, MCS; lacZα; Cmr)
– pBBR1MCS-5 (Broad host range
plasmid; MCS; lacZα; Gmr)

Electroporation Circular plasmid Antibiotic resistance genes Developing an electroporation
method for Halomonas sp.
transformation

[83]

Marinobacter
adhaerens HP15

pBBR1MCS (Broad host-range;
mob; Cmr); pSUP106 (IncQ;mob;
cos; Cmr; Tetr); pBBR.EGFP
(derivative of pBBR1MCS; egfp);
pRL27 (IncX oriT, Tn5; Kmr);
pITM1 and pITM2 (derivatives
of pBBR1MCS)

Electroporation Circular plasmid Antibiotic resistance genes, Gfp Developing a geneticmanipulation
system for the strain

[132]

pBBR1MCS; pSUP106; pAS7
(derivative of pGEM®-T Easy);
pAS8 (derivative of pGEM®-T
Easy);

Conjugation Circular plasmid Antibiotic resistance genes Developing a geneticmanipulation
system for the strain

[132]

Prochlorococcus sp.
MIT9313

pRL153 (RSF1010 derivative, Kmr) Conjugation with
E. coli 1100-2

Circular plasmid Gfp Studying conjugation-based
methods in Prochlorococcus

[133]

pRL27 (Kmr; mini-Tn5; Ori R6K) Conjugation with
E. coli BW19851

Circular plasmid Insertional mutagenesis through
Tn5

Studying conjugation-based
methods in Prochlorococcus

[133]

Pseudoalteromonas
sp. SM9913

pMT suicide vector (constructed
from pOriT-4Em; sacB; Ampr;
Emr; flanking regions of epsT)

Conjugation with
E. coli ET12567

With homology to
the chromosome

Knockout the epsT gene Developing a genetic
manipulation system for
Pseudoalteromonas sp. SM9913

[128]

Pseudoalteromonas
sp. BSi20429

pWD (derived from the ligation of
pSM429 and pUC19; Ori pBR322,
Cmr)

Electroporation Circular plasmid Expression of a cold-adapted
cellulase

Developing a heterologous
expression system for
Pseudoalteromonas

[116]

Roseobacter clade sp. pBBR1MCS Electroporation Circular plasmid Antibiotic resistance genes Developing a genetic
manipulation system for the
strains in this clade

[72]

IncQ-plasmids pRSF1010,
pMMB67EH, and pBBR1MCS
derivatives

Conjugation with
E. coli ST18
(a hemA mutant of
E. coli S17 λ-pir)

Circular plasmid Antibiotic resistance genes Developing a genetic
manipulation system for the
strains in this clade

[72]

Synechococcus sp.
CC9311

Integrative plasmid
pMD18TmpeV

Electroporation Circular Kanamycin resistance and
disruption of the mpeV gene

Developing a genetic manipulation
system for the strain

[84]

Vibrio cholerae – Natural competence With homology to
the chromosome

Antibiotic resistance genes Studying natural competence in
V. cholerae strains

[23]

Vibrio fischeri – Natural competence Chromosomal,
plasmid or linear
forms of DNA

Antibiotic resistance genes Studying natural competence in
V. fischeri and developing a
genetic manipulation system for
this species

[60]

Vibrio harveyi ORM4 pVSV102 (GFP; Kmr) Conjugation with
E. coli CC118 λpir
and E. coli strain
DH5α

Circular plasmid Gfp Studying the disease progression
phases of V. harveyi ORM4 in
abalones

[115]

Vibrio natriegens – Natural
competence
(MuGENT)

Linear DNA Antibiotic resistance genes and
other targets (e.g., genes in the
poly-β-hydroxybutyrate
biosynthesis operon)

Developing a genetic manipulation
system for the strain

[140]

V. natriegens pACYC184; pBR325, and pET
vectors; pUC19; plasmids with
the RK2

Electroporation;
chemical
transformation;
conjugation

Circular plasmid Antibiotic resistance genes, Gfp Developing a geneticmanipulation
system for the strain (also utilizing
the Cre-loxP system)

[73]

V. natriegens pDM4 (carrying the flanking
regions of target genes; sacB,
ori R6K;Cmr)

Conjugation with
E. coli S17–1 λpir

With homology to
the chromosome

Chromosomal deletion of the
dldh, lldh, pfl, andmdh genes
encoding D- and L-lactate
dehydrogenase, pyruvate
formate lyase, and malate
dehydrogenase, respectively.

Engineering V. natriegens for the
anaerobic biosynthesis of alanine

[141]
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Table 2 (continued)

Bacterial species or
strains

Vectora Methods of
manipulation

Characteristics
of the introduced
DNA

Expressed genes Technological interest Ref.

Vibrio vulnificus; Vibrio
parahaemolyticus;
V. cholerae

pVv3 (lacZ; Kmr) Electroporation Circular plasmid - Gfp;
-vvhBA hemolysin operon

Establishing efficient
electroporation procedure for
Vibrio through the pVv3 vector

[85]

Vibrio sp. Suicide T-Vectors pLP11-T and
pLP12-T (derivative of pSW23T;
Cmr; vmi480)

Conjugation Circular plasmid vmi480 Developing a genetic manipulation
system based on a
counterselectable marker for
Vibrio spp.

[127]

Vibrio sp. – pKV111-GFP (Ori p15A; Emr;
Cmr)
– Helper plasmid pEVS104 (ori
R6K; Emr; Cmr)

Conjugation with
E. coli CC118 λpir

Circular plasmid Gfp Developing a simple system for
tagging wild-type marine vibrios
with GFP

[125]

a Characteristics of vectors are indicated in brackets; Ampr, ampicillin resistance; Cmr, chloramphenicol resistance; Kmr, kanamycin resistance; Tetr, tetracycline resistance; Gmr,
gentamycin resistance; Emr, erythromycin resistance, MCS; multiple cloning sites.
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V. fischeri and V. cholerae. In V. fischeri, both the TfoY and TfoX proteins
contribute to competence acquisition but with a different function,
whereas in V. cholerae, they do not contribute directly to the natural
competence [60]. Indeed, in V. cholerae, TfoY is more involved in the
activation of type VI secretion system (T6SS), which is responsible for
interbacterial killing and intoxication of eukaryotes. The T6SS system
enhances HGT, thus contributing to the release of naked genomic DNA
from prey cells and its acquisition by the predator cells [53].
Moreover, the form of chitin capable of inducing cell competence
differs among species: in V. fischeri, only the oligosaccharidic chitin
can induce competence, whereas all forms of chitin induce
competence in V. cholerae, V. vulnificus [23,59,61], and
V. parahaemolyticus [58]. In V. vulnificus, the disaccharide GlcNAc2 also
induces competence, but not its monomer GlcNAc [62].

Bacteria use restriction endonucleases to protect their DNA from
bacteriophage infection, excess mutation, and genome rearrangements
induced by exogenous DNA. These systems decrease the efficiency of
natural transformation and are peculiar to each species. V. cholerae has
two extracellular nucleases, Dns and Xtr, which degrades the
exogenous DNA, thus preventing its internalization. The expression of
the Dns nuclease is induced at low cellular density by the quorum-
sensing regulator HapR, and the expression of the nuclease is repressed
at high cell density [55]. The authors suggested that the Dns nuclease,
which is active at low cell density, favors a rapid cell growth, thereby
supplying the cells with nucleotides. Conversely, when the population
reaches a high cell density, the uptake of exogenous DNA represents an
adaptation strategy through genome diversification [55].

The natural acquisition of plasmid DNA has also been reported in
Vibrio by cell-mediated contact, still utilizing chitin induction for
competence [63]. The authors showed that Vibrio strains were
capable of taking up nonconjugative plasmids from Escherichia coli
donor cells. The transfer was not by conjugation and occurred with
live or dead donor cells. Nevertheless, the plasmid acquisition
necessitated cell–cell contact, and the process did not occur when
the donor and the recipient cells were separated by a 0.2-μm filter
[63]. The same system has been also described in soil bacteria by
Wang et al. [30].

The natural transformation of Vibrio sp. is considered as a driver for
its ecological diversification. It is likely that the virulence of V. cholerae is
the result of several HGT events, which could explain the evolution of
this marine bacterium into a major human pathogen [64]. Similarly,
the transfer of the genes that encode for the capsular polysaccharide
(CPS), which is an important factor of virulence, occurred through
HGT in V. vulnificus, thus providing an explanation of CPS loci diversity
and evolution in marine bacteria [65]. The genome analysis of two
V. fischeri strains also demonstrated that this species underwent
HGT events also by conjugation and transduction in addition to
transformation [66,67].
Thus far, few studies have utilized the natural transformation as a
laboratory method for the genetic manipulation of marine bacterial
strains (Table 1 and Table 2) [39,60]. For instance, Pollack-Berti et al.
[60] used a simple and efficient protocol to naturally transform
V. fischeri with exogenous DNA. Specifically, the strain had been
grown to the mid-log phase in minimal medium supplemented
with soluble chitin oligosaccharides as the carbon source (e.g.,
chitohexaose). Natural transformation of this strain has been achieved
at high frequencies, thus providing a useful tool for the genetic
manipulation of the species.

3. Artificial competence of marine bacteria

3.1. Chemical transformation of marine bacteria

Artificial transformation was applied for the first time by Mandel
and Higa [68]. The E. coli cells were treated with a solution of CaCl2,
and this made the cells competent for the uptake of exogenous DNA.
Subsequently, Cohen et al. [69] demonstrated the process of bacterial
transformation; the exposure of cold suspensions of bacterial cells to
DNA and the subsequent application of thermal shock at 42°C created
pores in the cellular membrane, thereby promoting the DNA uptake
(Fig. 1).

Attempts to transformmarine bacteria by chemical procedures have
been reported, but not always with good results (Table 1). For instance,
Marcus et al. [70] were not successful in transforming V. cholerae strains
by using the osmotic shock protocol. Attempts have been performed by
suspending the cell pellets in cold hypotonic MgCl2 and CaCl2 solutions
and by adding the plasmid pBR322 (80 ng/ml) to the pellet-containing
solution; this is followed by the heat shock treatment at 42°C and the
selection of transformant colonies on Brain Heart Infusion agar plates
[70]. On the other hand, the use of a DNase-negative mutant of
V. cholerae showed positive results, suggesting that extracellular
DNase was a major barrier for the transformation [70]. The authors
successfully transformed wild-type and DNase-negative V. cholerae
strains by electroporation, thus evaluating the influence of different
parameters (e.g., field strength, plasmid size, and electrolyte
composition of the buffer) and emphasizing that host restriction
systems were not a significant barrier of transformation, as observed
in the osmotic shock attempts [70]. Electroporation was used as a
successful method for the transformation of V. parahaemolyticus,
V. alginolyticus, and V. cholerae [71].

Chemical transformation approaches were unsuccessful also for
other genera. Piekarski et al. [72] attempted to transform 12
Roseobacter sp. strains using the standard transformation procedure of
E. coli. The experiment was not successful, but, conversely, the
electroporation procedure produced positive results by using a
protocol that included, at least, five washings with glycerol to
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effectively remove the salts from the bacterial cultures during the
preparation of the electrocompetent cells. Recently, Vibrio natriegens
has been manipulated by both chemical transformation and
electroporation [73]. The transformation was successful by both
methods, thereby showing efficiencies of 105–106 CFU/μg of plasmid
DNA (pACYC184) and 106–107 CFU μg-1 of plasmid DNA (pACYC184)
by chemical transformation and electroporation, respectively [73].
However, chemical transformation produced successful results with a
mutant strain that carried a deletion in the chromosomal Dns
endonuclease. These results highlight that more efforts should be
directed toward the investigation of the transformability of marine
bacteria in relation to the host restriction system; this can help
in analyzing efficient ways to impair the bacterial restriction
modification defense response. Another important factor to be
considered is the presence of salts, which are required for the
cultivation of the majority of the marine strains, but these salts
could affect the subsequent steps of the transformation protocol,
particularly in the case of electroporation (as explained in the
following paragraphs).
3.2. Electroporation of marine bacteria

The breakthrough of transformation procedures has beenmadewith
the discovery that an electric pulse of around 5–10 kV/cm applied to
cells could induce cell membrane permeability by transient pore
formation, thereby promoting cell uptake of DNA and allowing
transformation of a large range of bacteria [74,75]. Currently,
exogenous DNA is broadly inserted into bacterial cells by
electroporation, which includes few steps. First, cells are made
competent to acquire exogenous molecules by exposing the cells to
several washings in cold, low ionic strength buffers; this allows the
elimination of remaining ions and substrates/metabolites from the
growth medium to stabilize cell membranes and to facilitate DNA
binding. Subsequently, the cells are exposed to an electric field in the
presence of DNA, and after the pulse is applied, the mixture is
incubated under appropriate conditions for bacterial repair. This
incubation step allows cell repair, but not cell growth, because the
cells are not yet under the pressure of the selective markers present in
the acquired DNA (Fig. 1). Conventional protocols for E. coli
electroporation apply 1-hour incubation in a nutrient-rich medium for
cell repair, whereas longer incubation time would be required for
strains that have longer duplication time [76,77]. Finally, putative
transformant colonies are selected on agarized media by utilizing the
advantage of the proper selection markers. The review by Aune et al.
[32] describes the different procedures used in artificial
transformation and the range of bacteria that can be transformed;
nevertheless, no reference to marine bacteria is present.

The mechanism of electroporation is not clearly understood [78,79].
The electroporation efficiency is strain dependent, but additional factors
can influence the experimental success, e.g., growth conditions, pulse
applied, and type of exogenous DNA [80]. A range of marine strains
that belong to different genera have been successfully transformed
by electroporation, e.g., Roseobacter, Vibrio, Pseudoalteromonas,
Caulobacter, Cyanobacteria, and Halomonas [41,72,73,77,81,82,83,84]
(Table 1 and Table 2). Particularly, the genetic manipulation of some
pathogenic marine bacteria has been carried out to further investigate
the bacterial virulence mechanisms. For instance, the shuttle vector
PVv3 has been recently constructed from the small naturally occurring
plasmid pVN-0126 to study gene expression in V. vulnificus [85]. This
plasmid could be easily introduced into other Vibrio strains, i.e.,
V. parahaemolyticus and V. cholerae by electroporation [85]. By using
this plasmid, the transformation efficiency has been optimized for the
V. vulnificus strain VN-0101 according to different parameters, e.g.,
growth phase, DNA amount, electric field strength, pH, and sucrose
concentration of the electroporation buffer, and it was found that
higher electroporation efficiencies (up to 2 × 106 per μg of DNA) could
be obtained with 10–25 ng of plasmid DNA [85].

Although electroporation is a well-established method that is
successful on a broad range of species, failure of transformation has
been recorded. Many factors could affect electroporation efficiency,
e.g., cell concentration, which displays considerable impact on
transformation [86], or temperature, which could affect the physical
properties of the cell membrane by changing lipid composition and
membrane fluidity [87]. In the following paragraphs, we emphasize
the main factors that can affect electroporation efficiency.

3.2.1. Effect of growth medium and buffer composition
The composition of the medium used to propagate cells before

electroporation can affect the physiological state of the cell membrane
[32]. It has been reported that the addition of membrane-weakening
agents to the bacterial growth medium, such as glycine – which is the
most commonly used weakening agent – can enhance the efficiency of
bacterial transformation because they act as destabilizers of the
peptidoglycan crosslinking [77,88]. However, the concentration of
these agents needs to be carefully established because high
concentrations can be toxic, thus hampering the viability of cells [32].
The salinity of the medium is particularly relevant for the marine
bacteria, which usually require a growth medium supplemented with
NaCl to maintain a high ionic strength environment, thereby
mimicking their original habitat [82]. However, the presence of salts is
one of the most important factors impeding the electroporation
process [33]. Conversely, the addition of cations during the washing
steps has been reported to have positive effects on the transformation
success: on one hand, cations act as stabilizers of the membrane, and
on the other hand, they can bind to DNA, thus minimizing the charge
repulsion effect between the membrane and the DNA itself [89]. In
E. coli, the presence of cations such as Mg2+ in the growth medium
and buffer solution has been reported to weaken the bacterial
membrane, thereby increasing the transformation efficiency [90,91].
Nevertheless, the use of a buffer that lacked Mg2+ increased the
transformation efficiency in V. parahaemolyticus; this is because of the
reason that Mg2+ ions are required by DNases to digest DNA, thus
affecting transformation efficiency by putatively decreasing the
amount of donor DNA in the cell [92]. Hence, buffers that lack Mg2+

are recommended for bacteria with a functional nuclease restriction
system [92]. Furthermore, the use of high concentration of Mg2+

(10 mM) can result in an arcing effect when electrical field is applied.
The concentration of salt also affects the activity of restriction
enzymes, as in the case of V. cholerae for which Dns endonuclease is
more active in presence of salt (at 175 mM NaCl at pH 7.5–8.0) [48]. A
protocol based on the evaluation of different electroporation
parameters has been developed for the marine strain Bacillus marinus
B-9987 that showed an increased transformation efficiency by using
glycine betaine (7.5%) as an osmoprotectant, 1 mmol L-1 HEPES and
2 mmol L-1 MgCl2 in the electroporation medium, and unmethylated
plasmid as the transforming DNA (see Section 3.2.4) and by applying
field strength of 20 kV cm-1 (Liu et al. 2014). The developed protocol
has been then used to successfully transform other strains such as the
marine isolate Bacillus licheniformis EI-34-6 [77].

Other organic compounds have been demonstrated to have a
beneficial effect on the transformation efficiency. Gilchrist and
Smit [82] reported that treatment of the cells of cyanobacteria with
EDTA-containing buffer disrupts the integrity of the paracrystalline
surface (S) layer that surrounds the cells, thus improving the
transformation up to 50% rather than without using EDTA. Among a
range of different buffers (phosphate salts, HEPES, Tris–HCl, and
glycerol), sucrose has been identified as the best stabilizer of cell
membrane for Vibrio [41], whereas the addition of 10–15% of ethanol
to the electroporation buffer allowed the transformation of Oenococcus
oeni, which was previously reported as a nontransformable strain
[93], probably by affecting membrane fluidity [94]. The addition
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of mercaptoethanol during the bacterial growth and in the
transformation mixture before electroporation increased the
transformation of E. coli strains [95].

3.2.2. Effect of field strength
In general, bacterial strains require high voltage to be efficiently

transformed. This is the case of the marine Caulobacter CB2A strain, for
which optimum transformation has been achieved with a field
strength of 12.5 kV cm-1 (25 μF capacitance, 4.2 ms time constant, and
400 Ω resistance) [82]. However, field strength of 6.25 kV cm-1 but
with higher capacitance (125–960 μF) significantly reduced the
survival rate of cells [82]. Moreover, the marine fish pathogens Vibrio
anguillarum and Pasteurella piscicida required optimal voltage strength
of 12.5 kV cm-1 and time constant of 5 ms to be transformed
efficiently with the three plasmids pSU2718, pCML, and pEV3 of
molecular sizes 2.6, 5, and 13.7 kb, respectively [96].

High-voltage electroporation has been reported to be deleterious in
the case of other marine strains. In a recent study, Harris et al. [83]
showed a tenfold increase in the transformation efficiency of
Halomonas sp. O1 at a voltage from 7.5 kV cm-1 (103 CFUs μg-1 of
DNA) to 10.5 kV cm-1 (104 CFUs μg-1 of DNA), followed by a slight
decrease in efficiency at a voltage of more than 10.5 kV cm-1. A
voltage of 2 kV cm-1 (4000 μF) was regarded as the best field strength
in the case of Synechococcus sp. CC9311 transformed with the voltage
range of 1–4 kV cm-1 [84]. With regard to the transformation of
different Roseobacter strains, Piekarski et al. [72] reported that
12.5 kV cm-1 (25 μF, 200 Ω, and 0.2-cm cuvettes) was the optimum
voltage among the different pulse intensities tested (7.5–15 kV cm-1).
The voltage strength has also been reported as a crucial value for the
transformation of Fischerella muscicola PCC 7414, which was
transformed with plasmid DNA at 1.6 kV cm-1, 600 Ω, and 15 ms,
among a range of values varying from 0.6 to 1.9 kV cm-1, from 5 to
15 ms, and from 200 to 600 Ω [97].

3.2.3. Effect of plasmid size, topology, concentration, and codon usage
pattern

In general, transformation efficiency increases proportionally to
DNA concentrations until a saturation level, which seems to be
specific to each species, without negative effects when higher DNA
concentrations are applied [98,99]. Indeed, Piekarski et al. [82]
reported that the number of transformant cells obtained is
proportional to the amount of plasmid DNA added during the
electroporation of Caulobacter strains. It has also been found that the
efficiency of transformation decreases with the increase in plasmid
size [80,100,101]. However, some exceptions have also been reported
for B. subtilis, for which the transformation efficiency was not affected
by the plasmid size [102].

DNA topology is another important determinant that has been
demonstrated to influence electroporation efficiency in both B. subtilis
and E. coli [102,103]. According to Xie and Tsong [103], the
translocation of DNA across the membrane in the E. coli strain JM105
was not affected by the topology of the DNA when tested in
experiments with circular supercoiled (scDNA), circular relaxed
(crDNA), and linearized (InDNA) forms of the plasmid pBR322.
However, the transformation efficiency with lnDNA was lower
than those with crDNA and scDNA because of the instability of
lnDNA in the host cell, where it was rapidly degraded by the host
enzymatic system. Similarly, Ohse et al. [102] demonstrated that the
electrotransformation of B. subtilis ISW1214 with the three
aforementioned topological isomers of the plasmids pUB110 (4.5 kbp)
and pBDR331T (12.6 kbp) produced positive results for the scDNA and
crDNA forms of both plasmids but a negative result for lnDNA.
This could mean that either lnDNA is unstable in the cytoplasm of
B. subtilis or that it could not be converted to the crDNA form in the
host cell, which is an essential step for the replication of the plasmid
in the cell.
To our knowledge, the effects of DNA topology on transformation
efficiency have never been tested on marine isolates. We can
hypothesize, however, that this factor could affect the transformability
of marine strains, as demonstrated for the model strains B. subtilis and
E. coli; thus, DNA topology should be considered in the array of
methods for the manipulation of novel isolates.

Once the exogenous DNA is internalized by any given bacterium, its
expression could be influenced by the codon usage bias of the host.
Similar to other bacterial species, marine bacteria have synonymous
codons that are not used with the same frequency, and this creates
what has been defined as codon usage bias. This phenomenon results
from the equilibrium of natural selection, mutation, and genetic drift
[104]. Few studies have been carried out using marine bacteria with
an aim to investigate their codon usage, mainly considering the
species V. cholerae [104,105,106]. This bacterium shows an atypical
high codon usage bias for genes with low potential expression, thus
hypothesizing that nonoptimal codons are used to maintain low
cellular concentrations of the encoded proteins [104]. Codon
optimization could be an important factor to be considered when
exogenous genes are inserted into other hosts by heterologous
expression. To date, this has been demonstrated in the nonmarine
strain Frankia sp., in which the use of a codon-optimized gene, which
encodes for an antibiotic resistant determinant, improved the
efficiency of bacterial transformation [107].

3.2.4. Effect of restriction enzyme systems
The majority of the bacterial cells own specific restriction

modification systems that prevent the excess of variability introduced
into genomes by recombination with exogenous DNA or by lytic
phage infection. These systems defend bacteria from the entrance of
DNA mediated by viruses or contact with other cells, thus degrading
the phage-derived or exogenous DNA at specific sites. Therefore, if
the exogenous DNA is modified at these specific sites, it cannot be
recognized by the restriction systems, which selectively digest
exogenous DNA by differentiating it from host endogenous DNA
depending on the host-specific DNA methylation pattern [108].
Consequently, defense systems of bacteria are responsible for
preventing the transformation occurrence. However, an exogenous
DNA with a methylation pattern that imitates the host-specific
methylation pattern (host-mimicking DNA) could be incorporated
into the recipient [109]. Yasui et al. [110] developed an efficient
method to increase the transformation efficiency of genome-
sequenced bacteria using “Plasmid Artificial Modification” (PAM), in
which the plasmid vector to be inserted into the bacterial host is
premethylated in E. coli according to the host-specific restriction
system. Wallace and Breaker [111] adopted this method and
constructed a specific PAM for a soil-inhabiting strain of Bacillus
halodurans, thereby increasing the transformation efficiency by 10- to
1000-fold in the recipient bacterium.

In addition, the presence of restriction endonuclease enzymes in
Cyanobacteria putatively impairs their transformation efficiency.
These bacteria are considered to be easily manipulated because a
range of strains that belong to this phylum have been successfully
transformed by natural transformation and electroporation [112,113].
However, some Cyanobacteria species remain recalcitrant to
incorporate exogenous DNA, and their transformation has been
achieved only by using premethylated DNA [97,109]. Another strategy
to bypass the restriction enzyme barrier was developed in marine
Vibrio strains by Kawagishi et al. [114] in 1994; they showed that
exposure of Vibrio cells to an osmotic shock before electroporation
enhanced the membrane permeability, thereby allowing periplasmic
DNase excretion.

Depending on the type of the bacterial restriction systems,
unmethylated DNA could also be successfully used in transformation
experiments. For instance, the transformation efficiency in B. marinus
B-9987 using unmethylated DNA plasmid pHT3101 was significantly



Fig. 2. Phase-contrast (a) and fluorescence (b) microscopy images of the marine strain
Halomonas axialensisM10 chromosomally tagged with a green fluorescent protein (Gfp)
using the mini-Tn7 transposon system delivered by conjugation [124]. The strain was
isolated from the seawater–brine interface of the deep hypersaline anoxic basin (DHAB),
Urania, located in the Eastern Mediterranean Sea [7].
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increased by around 300- to 1000-fold compared to the use of the
methylated DNA plasmid pHT3101. This could be due to the fact that
B. marinus B-9987 encodes restriction enzymes against Dam-
methylated and/or Dcm-methylated DNA, but it has no effects on the
unmethylated DNA [77].

Both natural and artificial transformations can be ineffective
depending on the bacterial strain of interest and the transforming
DNA. For instance, in Vibrio splendidus LGP32, attempts to transfer
plasmids using electroporation failed, but when the authors
transferred a novel RP4-based suicide vector, they succeeded in
obtaining several mutants including a strain with the deleted
metalloprotease gene vsm, which was then used to decipher the
virulence property of the gene [115].

The genetic manipulation of the typical marine genus
Pseudoalteromonas is hampered by the salt-dependent growth of its
species because salt acts as a barrier in preventing the binding of DNA
to the cell surface. Moreover, the abundant distribution of restriction
modification systems in the genome decreases DNA internalization
efficiency, and the presence of multiple resistance genes and drug
efflux pumps allows the cells to overcome the antibiotic pressure that
hinders the counter-selection of transformants [33]. Conflicting results
have been reported for the manipulation of Pseudoalteromonas
strains. The study published by Zhao et al. [116] showed that the
nonmobilizable plasmid vector pWD2 could efficiently transform its
original host strain through electroporation. Conversely, Wang et al.
[33] failed to electroplate the vector pWD2 in other Pseudoalteromonas
strains but could transfer its derivative pWD2-oriT by conjugation
with E. coli as the donor cells.
4. Conjugation in marine strains

The horizontal transfer of genetic material among marine bacteria
occurs naturally by conjugation, which is mediated by cell-to-cell
contact between the phylogenetically closely and distantly related
strains; it involves the transfer of mobile elements such as plasmids,
transposons, and integrons [73,117,118,119]. The bacterial conjugation
machinery relies on the origin of transfer, also known as oriT
sequence, and tra genes, which encode the relaxase proteins,
mating pair formation (MPF) complex, and type IV coupling protein.
The transfer apparatus is developed particularly in gram-negative
bacteria [120]. Recently, evidence obtained with Dinoroseobacter
shibae and Phaeobacter inhibens suggested that conjugation in
Roseobacter is controlled by quorum-sensing mechanisms [121]. In
some strains of the extremophile Thermus thermophilus, a particular
transformation-dependent conjugation has been described and
termed “transjugation” [122]. The process is bidirectional, has higher
efficiency than transformation, and requires a cell-to-cell contact. The
authors proposed a mechanism that involves two steps; according to
the mechanism, the donor cell pushes out the DNA and the recipient
cell takes up through the natural competence apparatus [122].

Functions necessary for transfer by conjugation can be provided on
one individual plasmid (donor strain), or be present on more
plasmids, thus involving a helper strain in addition to donor(s) strain.
If one plasmid encodes the complete conjugation machinery,
then biparental mating occurs [123]. Otherwise, if a helper strain is
necessary, with a helper plasmid encoding the transfer functions to
move the mobilizable plasmid from the donor to the recipient strain,
then the process is defined as triparental mating [119]. In four-
parental mating (a variation of the triparental mating), a helper
strain allows the transfer of two mobilizable plasmids from two
donor strains into the recipient strain [123,124]. The application of
conjugation protocols in laboratory is a time-consuming procedure
that also requires a specific step to counter-select the donor
strains from the transconjugant strains from the conjugation mixture
(Table 1; Fig. 1). However, conjugation is the most efficient way to
genetically manipulate strains that are recalcitrant to be transformed
by electroporation and chemical methods (Fig. 2).

Amain issue in the setup of a conjugation protocol is the selection of
the donor cells from the transconjugant cells after mating because the
transfer of the mobile element confers to the donor and the recipient
the same encoded trait. Many selection systems have been developed
with this aim. Sawabe et al. [125] tagged 39 Vibrio sp. strains with a
green fluorescent protein (GFP) cassette by biparental mating with
E. coli; the conjugation mixture was incubated on the ZoBell 2216E
agar, which contains 0.5% sodium alginate medium at 15°C, thus
allowing the growth of both strains [124]. Then, transconjugant
selection was achieved on a different medium specific for the selective
growth of Vibrio. Travers et al. [126] developed another system to tag
the fish pathogen Vibrio harveyi with GFP cassettes, and following the
conjugation process, analyses were performed by flow cytometry and
epifluorescence microscopy. The conjugative process was performed
by triparental mating, which involves the donor strain E. coli DH5α,
carrying the GFP gene on the plasmid pVSV102; the helper strain
E. coli CC118; and the recipient V. harveyi strain ORM4. Green
fluorescence of the recipient cells was verified by epifluorescence
microscopy, and Vibrio cells were distinguished from the E. coli donor
cells under a microscope by the presence of flagella and the ability
to swim [126]. Rare conjugation events nevertheless need to be
positively selected on the basis of differential growth conditions, or
physically separated from by flow cytometry-based cell sorting.

Recently, Luo et al. [127] developed an efficient system of gene
deletion in Vibrio sp. by constructing the two suicide plasmids pLP11
and pLP12 (derived from the plasmid pSW23T), which carry the
chloramphenicol antibiotic resistant gene and a novel counter-
selectable marker vmi480 and are able to form a toxin–antitoxin
complex with the gene vmi470. The authors proceeded to obtain
knockout mutants by constructing an efficient conjugation system in
which E. coli B1263 (donor of the suicide vectors) cannot grow on
thymidine or diaminopimelic acid (DAP); therefore, there was no
need for a recipient selection marker. In particular, species such as
V. cholerae, V. vulnificus, V. parahaemolyticus, and V. alginolyticus have
been considered. The sole expression of vmi480 is lethal to the cells,
but the lethal effect can be eliminated when vmi480 and vmi470 are
co-expressed in the same vector. Therefore, vmi480 is considered as
an effective counter-selectable gene for Vibrio [127]. Although sacB,
which is a well-known counter-selection marker in gram-negative
bacteria, has also been used in Vibrio sp., the toxicity of sacB is
susceptible to the presence of NaCl (required in the growth medium
for the majority of the marine bacteria) in the selective medium.
Therefore, the inadequate toxicity of sacB can decrease the selection
efficiency in many marine bacteria.

Genetic manipulation systems for Pseudoalteromonas strains
have been developed by Yu et al. [128] and Wang et al. [33].
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Pseudoalteromonas sp. are ubiquitous bacteria in marine environment
and play important biological and ecological roles in deep-sea
sediment ecosystem [128]. To date, more than 50 Pseudoalteromonas
genomes have been sequenced. Pseudoalteromonas cannot be
efficiently transformed by electroporation because of its restriction
modification systems that prevent the electroporation of double-
stranded DNA [33]. Thus, Yu et al. [128] constructed a conjugation
system to tag the deep-sea psychrophilic bacterium Pseudoalteromonas
sp. SM9913, by using E. coli ET12567 as the donor of the vector pOrit-
4Em, thus obtaining an efficiency of 1.8 × 10-3. Transconjugants were
selected from the E. coli donor at growth temperature of 20°C, which
resulted restrictive for E. coli [128]. Moreover, a suicide vector has been
successfully constructed for the same strain, using the pOrit-4Em
vector and the sacB gene as the counter-selection marker to knockout
the epsT gene that encodes the UDP-glucose lipid carrier transferase.
Wang et al. [33] selected Pseudoalteromonas haloplanktis TAC125
conjugants from E. coli donor cells by growing the conjugation mixture
at 4°C, which is not suitable for E. coli growth. With this system,
nevertheless, knockout mutants of genes involved in the bacterial cold
adaptation cannot be obtained because their absence affects the
transconjugant counter-selection [33].

In addition to the above-mentioned traits, the use of spontaneous
antibiotic-resistant mutants of the recipient strains is commonly
utilized for the counter-selection of transconjugants against E. coli
donor cells [129]. Actually, such mutations may also cause indirect
pleiotropic effects that might influence the general physiology of the
target strain, which consequently affects the mutant growth behavior
[130]. Moreover, the use of antibiotics as selection markers could
affect the conjugation efficiency, particularly in the case of halophilic
marine bacteria owing to their requirements of saline media because
several antibiotics including tetracycline and gentamicin have a
decreased activity in the presence of high salt concentrations [131].
Other factors could also affect antibiotic susceptibility. For example,
many Pseudoalteromonas strains are sensitive to chloramphenicol and
erythromycin, which could be hence utilized for transconjugant
counter-selection. However, false-positive colonies may appear when
chloramphenicol is used for the selection of transconjugants;
therefore, erythromycin is recommended the most as an effective
selective marker for these strains, although the basic mechanism of
this behavior remains unclear [33].

For the above-mentioned reasons, auxotrophic donor strains are
better adopted. Wang et al. [33] developed a universal efficient
conjugation system for Pseudoalteromonas strains by using shuttle
vectors and suicide vectors. The system was based on RP4 conjugation
machinery in E. coli WM3064, which is auxotrophic for DAP.
Conjugation efficiency for nine Pseudoalteromonas strains was
measured as 10-6–10-3 transconjugants per recipient cell; the selection
of the recipient transconjugants was performed on modified LB
mating medium (MLB) devoid of DAP [33]. Furthermore, a conjugative
system was constructed for Roseobacter clade using a plasmid
that encodes, as reporter gene, the flavin mononucleotide-based
fluorescent protein (FbFP protein) and a donor E. coli strain,
auxotrophic for aminolevulinic acid (ALA) [72]. A genetic system was
also constructed for Marinobacter adhaerens HP15 by using the two
plasmids pBBR1MCS and pSUP106, through biparental and triparental
mating, with E. coli ST18 as the donor and E. coli HB101 as the helper.
The selection of the transconjugants was performed by marker
selection and utilizing the donor ALA-auxotrophic feature [132].

In case of Cyanobacteria, a genetic manipulation system has been
successfully achieved for Prochlorococcus MIT9313 by transferring
RSF1010-derived plasmids, i.e., RL153, pRL153-GFP, and RL27, in
conjugation experiments with E. coli donors [133]. Particularly, the
plasmid RL27 contained a mini-Tn5 transposon, thus showing the
possibility to randomly inactivate genes by transposon mutagenesis.
The selection of transconjugants has been performed by growing the
conjugation mixture on a medium poor in the appropriate antibiotic.
Because the medium was not efficient to inhibit the growth of all
E. coli donors, remaining donors have been eliminated by using E. coli
phage T7. Importantly, transconjugant colonies did not appear on the
selective medium after mating; they required at least one step of
culture in liquid medium before isolation [133]. An improvement step
for conjugation in Cyanobacteria has been mentioned by Stucken et al.
[97] who showed that washing cells with NaCl (1 M) before
conjugation contributed to an increase in the efficiency by weakening
the thick cell wall, rich in exopolysaccharides.

The conjugation efficiency could also be affected by the ratio of the
donor to recipient cells, which varies upon strains. The best
conjugation efficiency for Roseobacter has been obtained at E. coli
donor-to-Roseobacter recipient ratios of 5:1 and 10:1 [72]. In case of
Pseudoalteromonas sp. SM9913, the transfer efficiency is optimal at a
donor-to-recipient ratio of100:1 [128].

5. Genome engineering in marine bacteria

Bacterial transformation and conjugation are useful to mediate the
delivery of genetic determinants targeting the bacterial chromosomal
DNA by utilizing homologous recombination and transposition-based
systems (Fig. 2). In recent years, several techniques that enable
bacterial genome engineering and editing, such as knockout, knockin,
and insertional mutations, have been developed. For instance,
clustered regularly interspaced short palindromic repeats (CRISPR)-
associated systems (CRISPR-Cas 9 systems) allowed convenient and
simple editing of both bacterial and eukaryotic genomes [134,135].
This system has been applied to E. coli [136] and Streptomyces strains
[137] among others. With regard to marine bacteria, the CRISPR/Cas 9
system in conjunction with the lambda Red recombinase system has
been used to knockin the fatty acid metabolic genes from a lipid-rich
marine bacterium, Shewanella frigidimarina, to E. coli to investigate the
genes related to fatty acid biosynthesis [138].

To leverage genomic information and characterize gene functions in
marine bacteria, more genetic manipulation systems are required
and new tools have been recently developed. Multiplex genome
engineering techniques by natural transformation (MuGENT) have
recently been developed for the marine V. cholerae and V. natriegens
[139,140,141]. Converse to the introduction of single mutations in
the bacterial genome, MuGENT allows an efficient and rapid genome
editing by simultaneously generating multiple mutations. The
approach is based on the ability of each natural competent strain to
internalize multiple DNA molecules [139]. With the application of the
MuGENT approach, cells are incubated with two types of lnDNA: the
first is a selected product that incorporates an antibiotic resistance
marker into the genome and the second is an unselected product that
introduces scarless genome edits at one or more loci. In V. natriegens
(made naturally competent by the ectopic expression of the
endogenous tfoX gene [140]) MuGENT proceeded to target the nine
genes involved in poly-B-hydroxybutyrate production by regulating
the expression or inactivating genes that affect its synthesis [140].

6. Conclusions

In the last decades, HGT processes among bacteria [23] and between
bacteria and their hosts (such as plants [142,143] and animals [35]) have
been a focal point of microbial molecular biology and genetic studies.
Genetic manipulation methods have been nevertheless applied to
marine bacteria to certain, but limited, extent [34,127]. Presently, this
has an impact, especially in the wake of the improvements of isolation
and cultivation procedures, on utilizing the biotechnological potential
of the novel isolates. Different genetic manipulation systems including
chemical transformation, electroporation, and conjugation have been
proven to be useful to manipulate marine bacteria [72,132,144]. It is a
challenging task to predict which method would be the most effective
for any given bacterium. In general, electroporation and conjugation
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are regarded as the most efficient methods to genetically manipulate
marine strains [33,72,77,82]. Nevertheless, the success of genetic
manipulation relies on different variables that must be examined in
depth and that need to be optimized for each single strain/species
(Table 1). These variables include both technical characteristics of the
methodologies and bacterial growth features. The use of NaCl for the
growth of marine bacteria is the main obstacle that affects the
manipulation of the bacteria. In natural competence, electroporation,
and chemical transformation protocols, the presence of NaCl in the
growth medium is fastidious and prevents, to some extent, the DNA
entry into the cytoplasm. Therefore, during the preparation of
competent cells, specific washings of the bacterial culture are necessary
to eliminate the remaining ions from the culture medium.
Furthermore, the presence of salts in the selective medium can also
affect the susceptibility of bacteria to antibiotics that are used as
selective markers of transformants or transconjugants. For instance, the
efficacy of tetracycline and gentamycin can be affected by high salt
concentration in the marine broth medium; moreover, kanamycin is
chelated by Cu2+, whereas tetracycline is chelated by divalent cations
such as Mg2+ and Ca2+. The formation of chelates may not have a
significant impact on the antibiotic stability, but it can decrease its
bioavailability [72].

In the construction of suicide vectors, which are important systems in
gene deletion, sacB is one of the most common counter-selection genes
for gram-negative bacteria. The induction of sacB requires the presence
of sucrose in the selection medium, but its toxicity is affected by the
presence of NaCl, thus hampering its use as counter-selection marker
for marine bacteria. For this reason, Travers et al. [126] proposed a
successful suicide vector that is induced by L-arabinose. This system
was designed to be used in the gene disruption of Vibrio strains, but it
remains to be tested on other marine gram-negative bacteria.

Optimization of NaCl concentrations could also aid to overcome
another important barrier for artificial transformation represented by
the restriction modification defense systems. In V. cholerae, the Dns
endonuclease is more active in the presence of salt, i.e., with 175 mM
NaCl [48]. Therefore, the use of a growth medium with a low content
of salts, but still capable of sustaining the bacterial growth, could be
validated for genetic manipulation experiments of marine bacteria.

Although there are several efficient genetic manipulation methods,
it is very difficult to design a universal strategy to efficiently transform
any bacterium with exogenous DNA. Hence, further research in this
field is required, with an aim to optimize protocols for specific
bacterial species or groups. The procedures of testing different
parameters such as DNA concentration and size, electric field voltage,
different buffers and their composition, bacterial cell density,
temperature, and incubation time of the transformation/conjugation
mixture will be time consuming, but they will enable an in-depth
investigation of both physiological properties and biotechnological
potential of the marine bacteria, which have been recognized as an
untapped source of genetic and functional diversity.
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