
Electronic Journal of Biotechnology 24 (2016) 38–42

Contents lists available at ScienceDirect

Electronic Journal of Biotechnology
Research article
A fast and simple assay to quantify bacterial leukotoxin activity
Tobias Oppermann a,1, Stefan Schwarz b,1, Nadine Busse b, Peter Czermak a,b,c,d,⁎
a Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Winchesterstrasse 2, 35394 Giessen, Germany
b Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
c Department of Chemical Engineering, Kansas State University, Durland Hall 1005, Manhattan, KS 66506-5102, USA
d Faculty of Biology and Chemistry, University of Giessen, Ludwigstrasse 23, 35390 Giessen, Germany
⁎ Corresponding author at: Institute of Bioprocess En
Technology, University of Applied Sciences Mittelhes
Giessen, Germany

E-mail address: peter.czermak@lse.thm.de (P. Czerma
1 These authors contributed equally to this work.

Peer review under responsibility of Pontificia Univers

http://dx.doi.org/10.1016/j.ejbt.2016.10.001
0717-3458/© 2016 Pontificia Universidad Católica de Valp
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 August 2016
Accepted 4 October 2016
Available online 20 October 2016
Background: Mannheimia haemolytica is the primary bacterial pathogen in causing bovine respiratory disease
with tremendous annual losses in the cattle industry. The leukotoxin from M. haemolytica is the predominant
virulence factor. Several leukotoxin activity assays are available but not standardized regarding sample
preparation and cell line. Furthermore, these assays suffer from a high standard error, a prolonged time
consumption and often complex sample pretreatments, which is important from the bioprocess engineering
point of view.
Results:Within this study, an activity assay based on the continuous cell line BL3.1 combined with a commercial
available adenosine triphosphate viability assay kit was established. The leukotoxin activity was found to be
strongly dependent on the sample preparation. Furthermore, the interfering effect of lipopolysaccharides in
the sample could be successfully suppressed by adding polymyxin B. We reached a maximum relative P95
value of 14%, which is more than seven times lower compared to current available assays as well as a time
reduction up to 88%.
Conclusion: Ultimately, the established leukotoxin activity assay is simple, fast and has a high reproducibility.
Critical parameters regarding the sample preparation were characterized and optimized making complex
sample purification superfluous.
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1. Introduction

Mannheimia haemolytica is the primary bacterial pathogen causing
bovine respiratory disease (BRD) and its primary virulence factors are
leukotoxin (LKT) and lipopolysaccharides (LPS) [1,2,3].

The LKT of M. haemolytica belongs to the repeat-in-toxin (RTX)
family [4,5,6]. All serotypes of M. haemolytica produce a 102–105 kDa
heat labile LKT during the logarithmic phase of growth [2]. In contrast
to other RTX toxins the LKT of M. haemolytica is specific for ruminant
leukocytes and the cytotoxicity is limited to ruminant lymphocytes,
macrophages, neutrophils and platelets due to the specific expression
of β2 integrins as a binding partner for the LKT [2,3,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20]. Especially, the leukocyte function associated
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antigen 1 (LFA1) is involved in causing the leukotoxic effect. LFA1 is a
heterodimer compound of a CD11a and a CD18 subunit. Binding
of LKT to both subunits causes the highest cytotoxic effect [9,14,
16,19,20]. The effect of LKT is strongly dose-dependent [4]. Low
concentrations activate neutrophils and macrophages, induce the
release of histamine by mast cells and inhibit the mitogen mediated
lymphoid proliferation [2]. The consequences are respiratory burst,
degranulation and release of pro inflammatory cytokines (tumor
necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interleukin-8
(IL-8)). High concentration causes apoptosis of bovine leukocytes by
extrinsic and intrinsic mechanisms and lead to pore formation, cell
swelling and ultimately to necrosis [2,10,12].

Besides LKT, LPS is a major actor of the cytotoxic effect. LKT and
LPS are the most prominent components in the supernatant of
M. haemolytica and are able to complex increasing the cytotoxicity
compared to native LKT [5,15]. LPS can also bind to β2 integrins
whereby the CD18 subunit does not seem essential [18,21]. The
spectrum of efficacy of LPS and LKT overlaps. Both can stimulate
alveolar macrophages to produce reactive oxygen and nitrogen
mediates. Furthermore, LPS can also induce the production of IL-1,
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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IL-8, leukotriene 4 and TNF-α, resulting in inflammation and apoptotic
cell death [15,22,23,24].

Themajority of LKT activity assays are based on themeasurement
of cytotoxicity. LKT sensitive cells are incubated with various
concentrations of the LKT followed by a cytotoxicity assay. In
general isolates of peripheral blood monocular cells (PBMCs) from
cattle and the bovine B-lymphoblastoid cell line (BL3) are utilized
[25,26,27,28,29,30,31]. Currently available cytotoxicity assays for
determining the LKT activity are the Chromium-51 release assay
[31], lactate dehydrogenase (LDH) release assay [27], neutral red
uptake assay [25], 3-[4,5-dimethyl(thiazol-2-yl)-3,5-diphenyl]
tetrazolium bromide (MTT) [30] and the nitroblue tetrazolium
(NBT) assay [28]. Non-cytotoxicity assays are based on the
morphological change of BL3 cells after incubation with LKT and
the inhibition of the luminol dependent chemiluminescence of LKT
incubated bovine neutrophils [5,10].

All LKT activity assays outlined above suffer from a high standard
error and a high time consumption caused by a complex sample
pretreatment. The overlapping cytotoxic effects and a molar ratio
of LPS/LKT of ca. 60:1 in concentrated culture supernatants from
M. haemolytica place a high demand on the sample preparation to
measure just the single effect of LKT [27]. However, assays enabling
activity measurements of the pure LKT are beneficial for bioprocess
applications. Furthermore, a time and temperature dependent
decrease in LKT activity is mentioned in the literature [26,32,33] but
remained uncharacterized with respect to activity assays. Therefore,
especially the sample preparation could influence the LKT activity
leading to a reduced reproducibility and comparability.

This study provides a novel assay for a fast and reproducible
determination of the LKT activity. The assay is based on a
commercial available adenosine triphosphate (ATP) viability assay
kit. Important parameters affecting the LKT activity such as time
and temperature throughout the sample preparation were
characterized and optimized. In order to repress the interfering
effect of LPS the addition of polymyxin B (PB) as a LPS inhibitor
was evaluated making further complex and time consuming
sample purification superfluous.
2. Material and methods

2.1. Preparation of the LKT activity standard

The LKT was obtained by growth of Mannheimia haemolytica
(ATCC® 43,270, American Type Culture Collection, USA) in RPMI-1640
medium (R6504, Sigma-Aldrich, Germany) in a 0.5 L stirred tank
reactor (MiniBio 500, Applikon, Netherlands) under similar conditions
as described previously [34,35,36]. Harvest occurred at the end of the
exponential growth phase. The supernatant was centrifuged (5000×g,
10 min, 4°C), afterwards filtered through a 0.22 μm bottle top filter
(SCGVT05RE, Merck Millipore, Germany) and aliquoted and frozen at
-85°C in cryo-vials (72.379, Sarstedt, Germany) [25].
2.2. Preparation of the cell culture

The BL3.1 cells were grown in RPMI-1640 (RPMI 1640 FG 1385,
Biochrom, Germany) supplemented with 10% (v/v) FBS (FBS
Superior, Biochrom, Germany) at 37°C and 5% CO2 in T75-flasks
(REF 83.3911.502, Sarstedt, Germany) with a working volume of
25 mL. The cells were passaged three days before the activity assay
was performed. Cell counts and viability were determined in a
hemocytometer using the trypan blue exclusion assay. Criteria for
passaging was a cell viability of ≥80%. The cell suspension was diluted
to a viable cell density of 0.15–0.30 ∗ 106 cells/mL to ensure a high
growth rate as well as a high viability.
2.3. General procedure of the ATP assay

Within this study a viable cell density of ≥0.60 ∗ 106 cells/mL and a
viability of ≥95% was set to be optimal for the assay. The cell
suspension was diluted in fresh medium to a viable cell density of
0.60 ∗ 106 cells/mL. The LKT activity standard (LKTAS) vial was
thawed in a water bath (23°C) until the ice was nearly gone.
Afterwards the LKTAS was supplemented with 1% (v/v) of a 5 mg/mL
concentrated solution of polymyxin B (Cat# 420,413, Calbiochem,
USA) in PBS (Biochrom, Germany) and incubated for 15 min on ice. A
twofold serial dilution of the cell suspension (0.60 ∗ 106 cells/mL)
served as a calibration and RPMI-1640 supplemented with 10% (v/v)
FBS was used as a blank. As the positive control 50 μL of a 4% Triton
X-100 (Sigma-Aldrich, Germany) solution dissolved in PBS was
supplemented with 50 μL of the cell suspension. A twofold serial
dilution with PBS was carried out for all samples in a white 96 well
plate (Nunc 136102, Thermo Fisher Scientific, Germany) to a final
volume of 50 μL/well. Each sample well was then supplemented with
50 μL of the cell suspension and the plate was incubated for 2 h at
37°C and 5% CO2. Afterwards, 100 μL of the working solution of the
viability assay (CellTiter-Glo®, Promega, Germany) was added to each
well. The plate was shaken for 3 min and remained for further 10 min
in the 30°C prewarmed plate reader (Synergy HT, BioTek Instruments,
USA), followed by the luminescence measurement.

The calibration line for cell count was forced through zero and a cell
number of 3 ∗ 104 cells/well was the upper value of the calibration. The
data were linearized by plotting the logarithm of the dilution factor of
the sample to the base of 2 on the abscissa according to [Equation 1].
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One unit/mL of LKT activity is defined as the concentration of
biological active leukotoxin which causes death of 50% of the target
cells. As an alternative calculation for the LKT activity the EC50 of the
dose response function in OriginPro 8.5 was tested (data not shown)
and rejected because the relative P95 value was higher compared to
the linearization method. The P95 value represents the interval of the
sample data which covers the true value 95% of the time.

2.4. Optimization of the sample preparation

The assay was carried out as previously described (2.3). To
determine the optimal sample preparation various incubations
conditions after thawing (10 min at 37°C + 50 min on ice/1 h at 23°C/
1 h on ice) were evaluated.

2.5. Optimization of the LKT incubation time

The assay was carried out as previously described (2.3). The LKT
incubation time was varied in an independent test serial between 1, 2
and 3 h.

2.6. Neutralization of LPS

Two experimentswithminor changes from the general procedure of
the ATP assay (2.3) were carried out to proof a sufficient neutralization
of LPS with PB. For the first experiment the effect of various PB
concentrations were evaluated. The incubation time was set to
was incubated for 70 min at 37°C for a complete LKT inactivation.
Afterwards the standard was split and one half was supplemented
with 1% (v/v) PB in PBS at a concentration of 5 mg/mL.



Table 1
Determined LKT units of the mean of triplicates and measurement deviation.

Sample 1 2 3 4 5 6 7 8 9 Averaged rel. P95 value

LKT units/mL 29.5 31.4 32.8 28.8 32.4 34.7 31.2 34.5 35.0 14%
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3. Results

3.1. Statistical evaluation of the assay

For the determination of the statistical values, nine sampleswith the
same LKT concentrationwere analyzed in three independent test series.
An averaged relative P95 value of 14% was calculated (Table 1).

3.2. Optimization of the sample preparation

The toxicity of the LKT standard shows a strong sensitivity to
the sample incubation condition and time after thawing (Fig. 1).
The storage for 1 h on ice did not show a significant reduction of
biological LKT activity compared to an immediate use. Nevertheless, a
temperature dependent reduction of the LKT activity is especially
favored at T ≥ 37°C. The higher the temperature the faster the LKT
inactivation.
Fig. 1. Temperature and time depended effect of the sample preparation on the LKT
activity at a relative LKTAS concentration of 0.25. The LKTAS was either incubated after
thawing for 10 min at 37°C, 1 h at 23°C, 1 h on ice prior the general ATP assay
procedure or immediately used.

Fig. 2. Incubation time dependent effect on the LKT activity. Throughout the general ATP
assay procedure the LKT incubation time was set to 1 h, 2 h and 3 h.
3.3. Optimization of the incubation time

Regarding the incubation time, no differences of the cytotoxicity
could be observed between 1 and 3 h (Fig. 2). However, an artificial
effect on the maximum death rate of the positive control (Triton
X-100) depending on the incubation time could be seen (data not
shown). At an incubation time of 1 h the death rate of the positive
control was 96% instead of the anticipated 100%. An insufficient
degradation of intracellular ATP after cell death could be assumed
causing an interference in the viability assay and an inaccurate death
rate of 96% is the result. Therefore, an incubation time of 2 h was set
to be optimal.

3.4. Neutralization of LPS

All samples supplemented with PB showed no difference to each
other (Fig. 3). Consequently, a saturation with PB can be assumed
Fig. 3. Effect of different PB concentrations on the LKT activity. Throughout the general
ATP assay procedure the LKTAS was supplemented with either 0.025 mg/ml PB,
0.05 mg/mL PB, 0.75 mg/mL PB or without PB.

Fig. 4. Effect of different temperature and PB sample pretreatments on the LKT activity at a
relative LKTAS concentration of 0.5. Throughout the general ATP assay procedure
the LKTAS was incubated for 70 min at 37°C and either supplemented without or with
0.05 mg/mL PB and compared to an immediately used LKTAS.
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at concentrations ranging from 0.025 mg/mL to 0.075 mg/mL. A
PB concentration of 0.05 mg/mL was selected based on a safety
factor to ensure neutralization under conditions with varying LPS
concentrations.

A further proof of a complete LPS neutralization through PB can be
seen in Fig. 4. The incubation of the LKTAS at 37°C for 70 min led to an
inactivation of the LKT [32,37,38] and the remaining cytotoxicity of
22% can be attributed to the LPS. A further supplementation with
0.05 mg/mL PB led to a complete loss of cytotoxic activity. Therefore, a
neutralization of LPS could be assumed.

4. Discussion and conclusion

Current available LKT activity assays are based on continuous cell
lines and isolated leukocytes. BL3.1 cells have the lowest variability
compared to other continuous leukocyte cell lines. The usage of BL3.1
cells makes the extraction of fresh leukocytes superfluous, reducing
the effort enormously and ensure a reproducible and high quality of
the target cells.

Most important is a standardized sample preparation and assay
procedure as demonstrated in this study. Especially, the time and
temperature throughout the sample preparation had a strong
influence on the LKT activity. A gentle thawing procedure in
combination with a sample preparation on ice is mandatory. This
leads to a higher accuracy and reproducibility compared to currently
available activity assays. We reached a maximum relative P95 value of
14%, which is more than seven times lower compared to previous data
[30]. The time consumption for the ATP assay is ~30 min. Compared to
the neutral red assay [39] and MTT [30] this corresponds to a
reduction of 75% and respectively 88%. A further huge advantage of
our established assay is the direct inactivation of LPS with PB, making
further complex and time consuming sample purification superfluous.

In summary, the established LKT activity assay is simple, fast and
sensitive overcoming all drawbacks of currently available activity
assays. A complete automation of the ATP assay is possible [40] making
the assay well suited for process monitoring (e.g. downstream) for
industrial LKT production. A transfer into a 384 well plate format is
conceivable for a high-throughput screening system and could further
reduce the time consumption and material costs.
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