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Background: Brettanomyces bruxellensis is an important spoilage yeast in thewinemaking process. The capacity of
this yeast to generate an undesired off-flavor constitutes a significant loss in the Chilean wine industry.
Results: The proteomic profile of B. bruxellensis in the presence of p-coumaric acid was determined by 2D gel
electrophoresis, gel image analysis and differential spot selection. A set of 41 proteins showed a differential
accumulation of ±2 and a p-value ≤0.0001. The homology sequence analysis was performed using the
databases available. Differential proteins belonged to the categories of ‘energy production and conversion’ and
‘amino acid transport and metabolism’.
Conclusions: The proteomic profile of B. bruxellensis cultivated in the presence of p-coumaric acid in synthetic wine,
agrees with the hypothesis of metabolic flux regulation, allowing a better conditioning to an adverse environment.
This study involved the translational level of B. bruxellensis in the production of ethylphenols and corroborated
that this yeast presented an advantage in these stress conditions. Thus, this work will allow an understanding
of the regulation and processes involved in the production of ethyl-derivate compounds by B. bruxellensis.
Furthermore, it allows the development of newer and better techniques for spoilage yeast control.
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1. Introduction

Wine alterations by yeast still constitute a potential threat,
particularly for products aged in wood barrels, where there is an
increased interest in spoilage by yeasts belonging to the genus
Brettanomyces. Among the species of this genus, Brettanomyces
bruxellensis is considered to be the worst contaminant not only in the
wine industry, but also in other processes such as bioethanol
production [1,2,3]. The presence of this yeast in wine has been
associated with the appearance of phenolic aromas described as
‘medical’, ‘horsy’ or ‘smoky’, which are considered strongly detractive
for the sensorial characteristics of the product. These off-odors result
from the metabolization of hydroxycinnamic acids naturally present in
grape must by B. bruxellensis. These hydroxycinnamic acids present
antimicrobial effects since microorganisms metabolize them to much
less toxic compounds such as vinyl or ethyl derivatives [4] The latter
are phenolic compounds such as 4-vinylphenol and 4-ethylphenol
from p-coumaric acid, or 4-vinylguaiacol and 4-ethylguaiacol from
.
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ferulic acid [3]. The mechanism of action of hydroxycinnamic acids is
similar to that of weak acids, which can disturb intracellular pH and
hence cell metabolism [5]. In order to counter the pH effects, the cells
reduce the concentration of protons by using a proton pump (Pma1p)
in the presence of different weak acids such as cinnamic, ascorbic,
octanoic, succinic or acetic acids [6,7]. An increase of H+-ATPase
pump activity has been described during the lag growth phase of
B. bruxellensis in the presence of p-coumaric acid, suggesting an early
adaptation mechanism against this hydroxycinnamic acid [8].

Different studies revealed that B. bruxellensis strains varied in their
production of phenolic substances in wine [9,10]. This variability in
sensory descriptions of B. bruxellensis has been related to genetic
strain variation. In fact, it is known that this yeast is a highly diverse
microorganism both genetically [11,12] and physiologically [9,13].
Genetic studies in this yeast have shown an unusual variability in
chromosome number and genome rearrangements which confer the
ability to survive and proliferate after alcoholic fermentation [11,14,
15]. Studies of different B. bruxellensis strains (CBS) belonging to the
same group display a very similar off-flavor production [9]. However,
the isolates from Tuscan wines showed a wide biodiversity within the
species, despite the limited geographic area [16]. This shows that the
relationship between the genomic diversity of B. bruxellensis and its
ability to produce phenols is still unclear.
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The B. bruxellensis strain LAMAP2480, an isolate from Chileanwines,
displays a high production of phenolic compounds, representing a
potential risk as wine-spoilage yeast. This isolate shows a very
efficient adaptation mechanism against the action of p-coumaric acid
during growth in synthetic wine [17].

Recently, genomic and transcriptomic approaches provided a set of
genes in B. bruxellensis LAMAP2480 which is highly represented when
the strain is grown in the presence of p-coumaric acid [18]. Thus, in
order to elucidate the mechanism used by B. bruxellensis LAMAP2480
in 4-ethylphenol production, the objective of this work was to
evaluate the proteomic response during yeast growth in the presence
or absence of p-coumaric acid.

2. Materials and methods

2.1. Microorganism

B. bruxellensis LAMAP2480was obtained from the strain collection of
theAppliedMicrobiology andBiotechnology Laboratory (LAMAP) of the
Universidad de Santiago de Chile (USACH). The strain was maintained
on YPD medium (0.5% peptone, 0.5% yeast extract, 4% glucose, 4% agar,
pH 6.0) until use.

2.2. Pre-culture and culture conditions

2.2.1. Pre-culture conditions
Before performing synthetic wine assays, an adaptation step was

carried out as described by Sturm et al. [19]. B. bruxellensis
LAMAP2480 was grown in YPD medium for 10 d at 28°C. Colonies
from YPD agar were inoculated into 10 mL of YPD1 (0.5% peptone,
0.5% yeast extract, 8% glucose, pH 6) supplemented with 6% (v/v) of
ethanol and grown at 28°C for 48 h. A total volume of the inoculum
was added to fresh medium prepared in a 1:1 proportion of SW (0.2%
yeast extract, 0.12% glucose, 0.24% fructose, 0.06% trehalose, 0.1%
(NH4)2SO4, 0.8% MgSO4, 0.2% KH2PO3, 0.25 mg/L of biotin, 0.0045 mg/l
of thiamin,10% ethanol (v/v), pH 3.8 adjusted with HCl), YPD2 (0.5%
peptone, 0.5% yeast extract, 4% glucose, pH 4). The culture was
incubated for 3 d at 28°C. Finally, 9 vol of synthetic wine was added to
1 vol of culture and yeasts were grown until a concentration of
108 cells/mL.

2.2.2. Culture conditions
A volume from the adapted culture was used to inoculate synthetic

wine to a final concentration of 106 cells/mL, containing 100 mg/L of
p-coumaric acid (Sigma-Aldrich, USA). A control without acid was also
used.

2.3. Growth kinetic

Growth of B. bruxellensis LAMAP2480 in synthetic wine in the
presence or absence of p-coumaric acid was performed at 28°C for 8 d
with shaking at 150 rpm. Growth was determined by measuring
absorbance at 640 nm. A total of 6 biological replicates of each
treatment were collected by centrifugation at exponential phase.
The cell pellets were washed with ice-cool Milli-Q water, and stored at
−-80°C until protein extraction.

2.4. Protein extraction and quantification

Each sample of B. bruxellensiswas submitted to protein extraction by
a modified protocol [20]. Cultures of 100 mL were collected at
exponential phase, six samples for each treatment: in the presence or
absence of 100 mg/L of p-coumaric acid. Samples were thawed on ice
and collected by centrifugation at 800 × g for 5 min at 0°C. The
sediment was washed with 30 mL phosphate buffer saline (PBS:
140 mM NaCl, 2 mM KCl, 10 mM Na2HPO4, 1 mM KH2PO4, pH 4.0)
and incubated on ice for 10 min. Cells were then recovered by
centrifugation at 800 × g for 5 min at 0°C. These wash and
centrifugation steps were performed twice. Subsequently, cells
were resuspended in 20 mL stabilization buffer A (1 M sorbitol,
10 mM MgCl2, 25 mM potassium phosphate buffer solution,
pH 7.8; 10.2 g/mL phenyl-methyl-sulfonyl fluoride (PMSF), 2 mM
dithiothreitol) and incubated at 30°C for 10 min. Following
centrifugation at 800 × g for 5 min, the pellet was resuspended in
20 mL stabilization buffer B (1 M sorbitol, 10 mM MgCl2, 25 mM
potassium phosphate buffer solution, Ph 7.8; 25 mM sodium succinate
buffer solution, pH 5.5; 10.2 mg/mL PMFS, 2 mM dithiothreitol) and
incubated for 10 min at 30°C. Then, 20 μg/μL zymolyase (Seikagaku
Corporation, Tokyo, Japan) was added and incubated at 37°C for 3 h.
Once the spheroplasts were obtained, they were collected by
centrifugation at 200 × g for 10 min at 4°C. The pellet was
resuspended in 3 mL of lysis buffer (50 mM HEPES buffer solution,
17 mg/mL PMFS, 20 μg/mL aprotinin, 30 μL NP-40) and incubated on
ice for 1 h. Finally, it was centrifuged at 6200 × g for 10 min at 4°C
and the supernatant collected. The total protein concentration was
determined using the method described by Bradford [21], using BSA
as standard. To remove salts and other substances which could
interfere with the labeling, electrophoresis and improve spot
resolution, we used the Ettan 2-D Clean-up kit (GE Healthcare,
80-6484-51) to precipitate the proteins. Therefore, proteins were
suspended in the DIGE labeling buffer (7 M urea, 2 M thiourea, 4%
CHAPS and 20 mM Tris). Finally, the protein concentration was
determined with the RC-DC (BioRad Protein Assay) method using BSA
as standard. Integrity of proteins was checked in 12% SDS-PAGE gels.

2.5. Labeling protein and 2D gel electrophoresis

In order to prevent protein binding affinity to fluorochromes, the
samples collected were labeled with fluorescent dyes using the
minimal labeling technique. Half of the biological control samples and
half of the treated samples were labeled with Cy3 and the other half
were labeled with Cy5, by incubating 50 μg of proteins with 400 pmol
of Cy3 or Cy5, respectively. The labeling reaction was conducted at 4°C
in the dark for 60 min. An internal standard (IS), composed of equal
amounts of all the samples, was labeled with Cy2.

Isoelectric focusing (IEF) was performed in 24 cm Immobiline
Dry-Strips (BioRad), immobilized in a pH gradient 3–10 and hydrated
in a rehydration solution (8 M urea, 4% CHAPS, DeStreak (12 μg/L),
65 mM DTT and 1% ampholytes (pH 3–11). The IEF was performed at
20°C in the strips: i) 300 V for 4 h, ii) 1000 V for 6 h, iii) 8000 V for
3 h and iv) 8000 V–32,000 V/h. Strips were equilibrated through a
process of reduction in 50 mM Tris buffer, 6 M urea, 30% glycerol, 2%
SDS, followed by alkylation in buffer containing 2.5% of iodoacetamide
(IAA), before the second dimension. Electrophoresis was performed in
25 cm × 21 cm × 1 mm homogeneous polyacrylamide 12.5% gels in
two steps: i) 2 W/gel for 1 h and ii) 15 W/gel for 6 h.

2.6. Gel image analysis and differential spot selection

Gel scanning was carried out on a Typhoon™ 9400 Variable Mode
scanner (Amersham Biosciences, Uppsala, Sweden). An image file
analysis was performed with the DeCyderTM 6.0 Differential Analysis
software (Amersham Biosciences, Uppsala, Sweden), which obtains data
on protein levels with statistically significant differences. Interferences
were manually minimized and the differentially accumulated spots
were selected using a Student t-Test (p-value ≤0.05) and False
Discovery Rate (FDR), in order to prevent false positives.

2.7. Differential spot identification and annotation

Selected spots were manually excised from gels and digested with
trypsin. LC MS/MS spectra and MS/MS were obtained in an Autoflex III



Fig. 1.Growth curves of B. bruxellensis cells in syntheticwinewith 100mg/L of p-coumaric
acid.
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MALDI-Tof/Tof spectrometer. Spectra were putatively identified by
using local ascot software methods of peptide mass fingerprinting for
MS data and ion search for MS/MS data, against B. bruxellensis
AWRI_1499 protein database obtained from NCBI and UniProt.
Putative annotated protein sequences were retrieved in FASTA format
and grouped by molecular function and biological process Clusters of
Orthologous Groups (COGs).
3. Results

3.1. Profile yeast growth in the presence of p-coumaric acid

As expected, the growth assays showed that the wine strain
B. bruxellensis LAMAP2480 grew with a significant delay (over 7 d) in
the presence of p-coumaric acid. This was despite yeast growth in the
presence of acid reaching similar values to the control treatment
(Fig. 1). A normal consumption of glucose was observed in both
conditions (data not shown). Samples were taken when the cultures
reached a similar exponential growth phase, to avoid any variability in
the comparative proteomic analysis.
Fig. 2. Differentially accumulated proteins detected in 2D-PAGE. 2D-gel showing proteome pr
during growth in synthetic wine without (A) and with (B) 100 mg/L of p-coumaric acid.
3.2. Proteomic analysis

To identify proteomic changes caused by the presence of
p-coumaric acid, protein extracts were separated by 2D
electrophoresis. A total of six protein samples were analyzed for each
treatment: with or without p-coumaric acid. On average, the
comparative analysis of 2D electrophoresis gel images provided the
detection of 925 differentially expressed proteins (Fig. 2). During the
analysis with DeCyder™ Differential Analysis software, spots with
quantitative changes (p-value ≤0.001) were considered. Based on this
analysis, a total of 179 proteins showed significant changes in
abundance under the different treatments. Finally, in order to narrow
the data, a new selection was performed by applying a 99.99%
confidence level (p-value ≤0.0001) and an abundance of ≥2. Under
these conditions, a total of 41 proteins were detected and selected to
be identified (Table 1). The analysis of proteins from the total
proteins accumulated differentially in the presence of p-coumaric
acid revealed that the majority showed an upregulated accumulation
with a fold change variation between 2.02 and 9.79 (Table 1).
Interestingly, only one protein identified as a phosphoglycerate
mutase (spot 2206), involved in the glycolysis pathway displayed a
downregulation in the presence of p-coumaric acid; all other proteins
upregulated (Table 1).
3.3. Analysis of differentially accumulated proteins

The sequence homology analysis was performed using the
B. bruxellensis AWRI1499 (Australian strain) databases available,
which were then compared with genomic data of the Chilean strain
LAMAP2480. The 41 differentially accumulated and identified proteins
were divided into different categories according to biological
processes and molecular function by COGs. It can be observed that the
proteins are clustered in three biological processes: (A) metabolism,
(B) cellular processes and signaling and, (C) information storage and
processing (Fig. 3). Moreover, the functional category distribution for
molecular processes showed that the addition of p-coumaric acid led
to the accumulation of proteins belonging to the category of
‘translational, ribosomal structure and biogenesis’ (26.7%) and
‘post-translational modification, protein turnover and chaperones’
(20.6%) (Fig. 4). Interestingly, the third and fourth main group of this
distribution was ‘energy production and conversion’ and ‘amino acid
transport and metabolism’, which include 14.7% and 8.8% of the total
ofile of B. bruxellensis cells and numbered spots corresponding to the proteins identified



Table 1
Proteins of Brettanomyces bruxellensis differentially accumulated during growth in synthetic wine with 100 mg/L of p-coumaric acid. Numbered spots correspond to proteins observed in
Fig. 2.

Ot NCBI Acc. no.
D. bruxellensis
AWRI1499

%
seq.
Cov.

Acc.
UniProt

Protein description blast
D. bruxellensis AWRI1499

Fold
change

Acc. no. D.
bruxellensis
LAMAP2480

Score
bits

E value Identity
(%)

Protein descption blast D.
bruxellensis LAMAP2480

577 gi|385,303,999 25 I2JYI5 Heat shock protein Hsp88 3,67 DEB_0656 1097 0 98 Heat shock protein homolog Sse1
586 gi|385,303,999 26 I2JYI5 Heat shock protein Hsp88 3,16 DEB_0656 1097 0 98 Heat shock protein homolog Sse1
594 gi|385,304,066 17 I2JYP9 Translation initiation factor eif3

subunit
2,46 DEB_5225 1393 0 95 eIF3b subunit of the core complex of

translation eIF3
599 gi|385,303,999 24 I2JYI5 Heat shock protein Hsp88 3,01 DEB_0656 1097 0 98 Heat shock protein homolog Sse1
604 gi|385,304,182 15 I2JZ09 Glutamyl-tRNA synthetase 2,29 DEB_3410 1329 0 94 Glutamyl-tRNA synthetase (GluRS)
605 gi|385,303,590 9 I2JXF2 Aconitase mitochondrial precursor 2,46 DEB_2803 1533 0 97 Aconitase
745 gi|385,303,397 15 I2JWX0 Heat shock protein Ssb1 3,35 DEB_0154 1167 0 94 Cytoplasmic ATPase

Ribosome-associated molecular chaperone
751 gi|385,303,397 38 I2JWX0 Heat shock protein Ssb1 3,42 DEB_0154 1167 0 94 Cytoplasmic ATPase

Ribosome-associated molecular chaperone
752 gi|385,304,308 13 I2JZC9 Mitochondrial matrix ATPase 2,02 DEB_3227 1192 0 93 Hsp70 family ATPase
776 gi|385,303,397 16 I2JWX0 Heat shock protein Ssb1 2,17 DEB_0154 1167 0 94 Cytoplasmic ATPase: Ribosome-associated

molecular chaperone
795 gi|385,305,672 11 I2K328 Polyadenylate-binding protein 2,24 DEB_6112 1226 0 90 Poly(A) binding protein
824 gi|385,305,672 23 I2K328 Polyadenylate-binding protein 2,36 DEB_6112 1226 0 90 Poly(A) binding protein
832 gi|385,305,672 11 I2K328 Polyadenylate-binding protein 2,52 DEB_6112 1226 0 90 Poly(A) binding protein
1063 gi|385,302,952 28 I2JVQ3 Vacuolar ATP synthase subunit b 2,04 DEB_8230 903 0 100 Subunit B of the vacuolar H+-ATPase

(V-ATPase)
1084 gi|385,302,952 25 I2JVQ3 Vacuolar ATP synthase subunit b 3,85 DEB_8230 903 0 100 Subunit B of the vacuolar H+-ATPase

(V-ATPase)
1088 gi|385,303,472 19 I2JX43 Delta-1-pyrroline-5-carboxylate

dehydrogenase
2,52 DEB_1480 1069 0 99 Delta-1-pyrroline-5-carboxylate

dehydrogenase
1149 gi|385,305,298 15 I2K234 Serine mitochondrial precursor 2,02 DEB_0153 841 0 86 Mitochondrial serine

hydroxymethyltransferase
1285 gi|385,303,397 22 I2JWX0 Heat shock protein Ssb1 2,05 DEB_0154 1167 0 94 Cytoplasmic ATPase.

Ribosome-associated molecular chaperone
1351 gi|385,301,161 49 I2JQX1 Isocitrate mitochondrial precursor 3,18 DEB_9391 914 0 97 Mitochondrial NADP+-specific isocitrate

dehydrogenase
1373 gi|385,301,947 10 I2JT02 Translation elongation factor 2 2,06 DEB_5012 1523 0 96 Elongation factor 2 (EF-2)
1734 gi|385,304,846 6 I2K0U7 Malate NAD+-dependent 2,05 DEB_6563 659 0 99 Mitochondrial malate dehydrogenase
1891 gi|385,303,892 22 I2JY86 Sphingolipid long chain

base-responsive protein Pil1
2,33 DEB_9433 466 e-132 83 Primary component of eisosomes

1902 gi|385,304,034 13 I2JYL8 Elongation factor 1-β 9,79 DEB_5213 235 6,00E-63 64 Elongation factor 1-β
1912 gi|385,304,034 3 I2JYL8 Elongation factor 1-β 8,12 DEB_5213 235 6E-63 64 Elongation factor 1-β
1922 gi|385,306,057 6 I2K441 60s ribosomal protein l8-b 6,89 DEB_7740 472 e-134 90 Ribosomal protein L4 of the large (60S)

ribosomal subunit
1929 gi|385,305,338 2 I2K272 40s ribosomal protein s5 2,41 DEB_3786 423 e-129 100 Protein component of the small (40S)

ribosomal subunit
1973 gi|385,301,952 I2JT04 YMR226c-like protein 2,25 DEB_3523 534 e-153 98 NADP+-dependent dehydrogenase
1982 gi|385,306,057 9 I2K441 60s ribosomal protein l8-b 5,71 DEB_7740 472 e-134 90 Ribosomal protein L4 of the large (60S)

ribosomal subunit
1986 gi|385,303,283 28 I2JWL7 Sphingolipid long chain

base-responsive protein Pil1
2,36 DEB_9433 395 e-111 74 Primary component of eisosomes

2074 gi|385,306,053 4 I2K437 60s ribosomal protein l2 4,43 DEB_7737 484 e-137 94 Protein component of the large (60S)
ribosomal subunit

2076 gi|385,301,733 14 I2JSF0 Alcohol dehydrogenase 2,15 DEB_7598 453 e-128 64 Mitochondrial alcohol dehydrogenase
2078 gi|385,303,430 2 I2JX01 Glyceraldehyde-3-phosphate

dehydrogenase
5,38 DEB_4294 674 0 98 Glyceraldehyde-3-phosphate

dehydrogenase
2194 gi|385,305,335 3 I2K269 Heat shock protein Hsp20 3,74 DEB_3791 364 e-101 89 Small heat shock protein C4
2204 gi|385,304,076 17 I2JYQ7 Mitochondrial peroxiredoxin Prx1 2,99 DEB_0579 471 e-134 99 Mitochondrial peroxiredoxin
2205 gi|385,305,335 5 I2K269 Heat shock protein Hsp20 3,47 DEB_3791 364 e-101 89 Small heat shock protein C4
2206 gi|385,300,983 13 I2JQG8 Phosphoglycerate mutase -2,11 DEB_6902 483 e-137 95 Tetrameric phosphoglycerate mutase
2210 gi|385,305,359 27 I2K291 Vacuolar ATP synthase subunit E 5,95 DEB_11809 350 2,00E-97 93 Subunit E of the vacuolar H+-ATPase

(V-ATPase)
2244 gi|385,304,076 11 I2JYQ7 Mitochondrial peroxiredoxin Prx1 3,82 DEB_0579 471 e-134 99 Mitochondrial peroxiredoxin
2331 gi|385,303,768 3 I2JXW9 Translationally controlled tumor

protein
2,44 DEB_9730 320 1,00E-88 93 Protein that associates with ribosomes

2335 gi|385,305,439 4 I2K2G2 Eukaryotic translation initiation
factor 5a

2,46 DEB_1606 313 1,00E-86 99 Translation elongation factor eIF-5 A

2430 gi|385,303,843 6 I2JY42 Peroxiredoxin Tsa1 4,02 DEB_7532 404 e-113 100 Thioredoxin peroxidase
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proteins, respectively. These latter groups can be related to energetic
imbalance that supposes the maintenance of intracellular pH.

4. Discussion

In this study, we carried out an analysis of the proteome changes
occurring in yeast during the exponential growth phase, in the
presence of p-coumaric acid. Within the cells exposed to p-coumaric
acid, we detected an increased accumulation of proteins related to
stress proteins and chaperones such as Hsp20, 88 and several Hsp70
isoforms. The small heat shock proteins (sHSP) have been described in
different tissues and organisms only in stress conditions [22]. They are
induced by exposure to a range of stress factors, such as Hsp26,
which is induced by osmostress [23], heat shock [24], H2O2 [25] or
exposure to sorbic acid [26]. Hsp20 (spots 2194 and 2205), is a well
characterized protein in plants and is induced by heat-stress [22]. In
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Fig. 3. Functional category distribution of identified differential proteins associated by
Clusters of Orthologous Groups for biological processes.
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stress conditions, Hsp20 aggregate to form complexes such as
intracellular matrices to prevent protein denaturation [27]. However,
the precise role and function of Hsp20 under weak acid stress in yeast
remains unknown. In Saccharomyces cerevisiae, it has been proposed
that Hsp26 could be used to prepare denatured proteins for refolding
or degradation under sorbic acid stress [26]. In our case, Hsp20 could
exert a similar role in the resistance to p-coumaric acid. In this regard,
the data suggests that an inhibitory action of p-coumaric acid could be
intracellular protein denaturation, as has been described for sorbic
acid [26]. In this context, other HSP were also induced under
p-coumaric acid stress, such as Hsp70 isoforms (spots 745, 751, 776
and 1285). Hsp70 are specialized proteins involved in translation and
early polypeptide folding processes [28]. It is known that Ssb1
(Hsp70) is induced by H2O2 [25] in response to sorbic acid [26]
and its deletion produces mutants which are more sensitive to
low temperatures and salt [29]. Furthermore, we observed the
accumulation of Hsp88 isoforms (spots 577, 586 and 599) or Sse1p in
synthetic wine in the presence of ethanol. Previous works have
described Sse1p as proteins involved in environmental stress
responses, which are accumulated in the presence of ethanol, and
prevent protein unfolding [30]. The increase of these proteins in the
presence of p-coumaric acid could be indicative of an increase in
damaged intracellular proteins or a major protein expression and/or
turnover in p-coumaric acid stress.

Several ribosomal proteins (spots 1922, 1924, 2074) and translation
elongation factors (spots 1373, 1912), along with different translation
initiation factors (spots 594, 2335) (Table 1), show a greater
accumulation under p-coumaric acid conditions, suggesting that the
synthesis of most general proteins is activated under these conditions.
Translation elongation factors such as EF-3A, similar to the ones
Fig. 4. Functional category distribution of identified differential proteins a
detected in this work, have been described in S. cerevisiae under sorbic
acid stress conditions [26]. Studies on the adaptive response to acetic
acid in the highly resistant yeast Zygosaccharomyces bailii, have shown
an increased accumulation of the translation initiation factor eIF-5A
and protein component of the small (40S) ribosomal subunit [31],
similar to the proteins detected in B. bruxellensis in the presence of the
weak p-coumaric acid [31]. The accumulation of these proteins, in
association with the overproduction of chaperones, may stimulate
protein synthesis rate for the cells to grow even under unfavorable
conditions of p-coumaric acid. In fact, the data suggests the synthesis
of most proteins activated by p-coumaric acid is to restructure the
mechanism for more energy production (see below).

Metabolism was the principal biological process determined in this
study (Fig. 3), energy production and conversions were included as
the principal molecular functions (Table 1). This category can be
related to an energetic imbalance that supposes the maintenance of
intracellular pH under weak acid conditions. The dissociation of weak
acids in the cell leads to the accumulation of protons and of the
corresponding anions resulting in internal acidification [32].
Hydroxycinnamic acids diffuse into the cell affecting cellular pH,
blocking transport and inhibiting growth [5]. To counteract the weak
acid induced intracellular acidification, an increase in the activity of
the plasma membrane H+-ATPase and of the vacuolar ATP synthase
(V-ATPase) is observed under weak acid stress [32]. An H+-ATPase
pump which supports a mechanism to counteract the decrease in
internal pH caused by the presence of this acid, has been described in
B. bruxellensis in response to p-coumaric acid growth [8]. Two
different V-ATPase subunits were spotted in our study (spots 1063,
1084 and 2210), both included in the molecular category energy
production and conversion (Fig. 4). V-ATPases are large, complex
enzymes responsible for the translocation of protons into the lumen
from the cytoplasm. This action is very important for many cellular
processes, such as endocytosis, cytoplasmic pH homeostasis, protein
processing, and the coupled transport of small molecules. Moreover, it
plays an important role in stress tolerance [33,34]. These data suggest
a role for V-ATPases in tolerance to p-coumaric acid maintaining
cytoplasmic pH homeostasis. Additionally, the treatments with sorbic
acid in S. cerevisiae promoted the accumulation of Atp2, a
mitochondrial ATPase β-subunit [26]. The apparent increase of energy
generation during adaptation to p-coumaric acid growth is supported
by previous investigations, which show the excess consumption of
intracellular ATP pools as an attempt to restore the homeostasis
under weak acid conditions [35,36]. Interestingly, different works
have shown the upregulation of Atp2 by ethanol [37]. In our study
B. bruxellensis was grown in SW containing 10% ethanol, which could
be contributing to the accumulation of V-ATPases observed.

In addition to the accumulation of mitochondrial proteins involved
in energy generation, we also detected three proteins that belong to
ssociated by Clusters of Orthologous Groups for molecular function.
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the tricarboxylic acid cycle (TCA): aconitase (spot 605), malate
dehydrogenase (spot 1734) and NADP+-specific dehydrogenase (spot
1351). The stimulation of TCA flux in p-coumaric acid stressed
B. bruxellensis cells allows the enhancement of the ATP pool.
Previously, malate dehydrogenase has been found to be required
for the first step of weak acid metabolism in the resistant yeast
Z. bailii [31,38]. This yeast is resistant to acetate and has the ability
to metabolize the acid in the presence of glucose, while in similar
conditions malate dehydrogenase was depressed in S. cerevisiae.
Considering this data, the increase of this enzyme in B. bruxellensis is
consistent with the high accumulation of V-ATPases, due to an
increase of ATP synthesis required in the presence of weak acids. This
supports the energy-consuming mechanism necessary to counteract
its deleterious action, as has been reported in S. cerevisiae [31,32,39,40].

In relation to energy generation, other enzymes belonging to
the dehydrogenase family have been detected during growth of B.
bruxellensis under p-coumaric acid stress (spots 1973, 2076 and 2078).
In S. cerevisiae these enzymes form complexes in the mitochondria.
One of these complexes has three NADH-dehydrogenases, a
glycerol-3-phosphate dehydrogenase, an acetaldehyde dehydrogenase
and TCA enzymes (malate dehydrogenase, citrate synthase, succinate
dehydrogenase and fumarate hydratase) [41] In our work, a variety
of these enzymes have been detected, suggesting an increase of
NADH and ATP pools, which corroborate the resulting high energy
demand for growth under p-coumaric acid conditions. These
assumptions are in agreement with the increased accumulation
of glyceraldehyde-3-phosphate dehydrogenase (spot 2078)
(Table 1), a glycolytic enzyme responsible for formation of
1,3-bisphosphoglycerate and NADH. Furthermore, an alcohol
dehydrogenase (spot 2076) (Table 1) was present in our study under
p-coumaric acid conditions. This fact may be related to an increase of
glycolytic flux through glucose to compensate for the energetic
imbalance caused by the weak acid. Other works described evidence
of an enhancement of the key glycolytic enzymes [26], which
support previous observations stressing the importance of an
energy-generating metabolism to weak acid adaptation [35,36].
Moreover, in previous studies with nitrate, B. bruxellensis presented a
metabolic flux regulation, with an increase of ATP synthesis, TCA and
glycolytic enzymes and an overproduction of alcohol dehydrogenase
in order to compensate for the energetic imbalance caused by nitrate
assimilation [42]. These data suggest that B. bruxellensis could present
similar behavior in the presence of p-coumaric acid, which induces the
same metabolic responses in order to obtain the necessary energy to
cover the energetic demand caused by growing under these stress
conditions. On the other hand, the only enzyme not accumulated was
a phosphoglycerate mutase (spot 2206) (Table 1) responsible for the
conversion of 3-phosphoglycerate to 2-phosphoglycerate.

In this work we detected an increased accumulation of
the Δ1-pyrroline-5-carboxylate dehydrogenase (spot 1088) in
B. bruxellensis under p-coumaric acid stress. Structurally, this enzyme
has been well characterized in S. cerevisiae [41,43] and is involved in
the conversion of the excess proline to glutamate in the mitochondria
[44]. Proline catabolism intermediate Δ1-pyrroline-5-carboxylate is
toxic to yeast cells because of the formation of ROS [45] and directly
inhibits mitochondrial respiration [46]. This compound is metabolized
by Δ1-pyrroline-5-carboxylate dehydrogenase into a non-toxic
intermediate, the amino acid glutamate [43,45,46]. Moreover, the
enzyme is required in different species to regulate redox state,
homeostasis and virulence [47,48]. Even in plants, it has been
described as playing an important role in protection from proline
metabolism toxicity [49]. On the other hand, it has been described
that proline-accumulating strains displayed tolerance to acetic acid,
whereas strains with compromised proline metabolism displayed
sensitivity [50]. Furthermore, sensitivity to weak acids appears to be
reduced with the addition of proline. The data suggests that the
increased accumulation of Δ1-pyrroline-5-carboxylate dehydrogenase
for glutamate formation could be a strategy of B. bruxellensis to obtain
precursors for TCA and an increase of ATP, in order to equilibrate the
homeostasis in p-coumaric acid conditions. In our study, a
mitochondrial peroxiredoxin Prd1 (spots 2204 and 2244) and a
peroxiredoxin Tsa1 (spots 2430) were accumulated during stress
conditions (Table 1). The first presented thioredoxin peroxidase
activity and is induced during respiratory growth and oxidative stress
[51]. The second, considered as the major yeast peroxiredoxin, acts as
both a ribosome-associate and a free cytoplasmic antioxidant. It
functions as a specific antioxidant in the cytoplasm to protect the cell
against the oxidative stress caused by nascent-protein misfolding and
aggregation [52]. Transcript analysis carried out in S. cerevisiae grown
in sorbic acid displayed many enzymes involved in reducing oxidative
stress, which were not detected in the proteomic study. However, our
work revealed different proteins related with these processes and
apparently induced by p-coumaric acid stress.

Within the differentially accumulated proteins, it was not possible to
find Pad1p, enzyme responsible for decarboxylating p-coumaric acid
and converting it into 4-vinylphenol [20]. It has been reported that
4-ethylphenol formation is growth associated, and occurs roughly
between mid-exponential growth phase and the beginning of the
stationary phase [53]. This could explain the absence of the Pad1
protein within the differentially accumulated proteins, therefore,
this enzyme decarboxylated the p-coumaric acid in the early stages
of growth. Our results show proteins accumulated during the
exponential phase, wherein the second reaction step occurs,
corresponding to the reduction of 4-vinylphenol to 4-ethylphenol.

In this work we have explored 2DE-based expression proteomics
focusing on the growth of B. bruxellensis LAMAP2480 in the presence
of hydroxycinnamic acids namely p-coumaric acid, to extend the
knowledge on the mechanisms underlying its response to weak acid.
The results indicate that the response to p-coumaric acid involves an
increased activity of different metabolic processes to improve the
requirements of ATP and NADH production, in order to assure cell
detoxification. Results also suggest that there is an induction of
protective mechanisms in response to the acid, in particular, through
the induction of RNA machinery, oxidative stress response and an
increase of TCA flux. Taken together, data obtained from this study
provides insights into p-coumaric acid adaptation in the wine spoilage
yeast B. bruxellensis.
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